Tính:
1.2+2.3+3.4+...+50.51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
Đặt A = 1.2 + 2.3 + 3.4 + ... + 50.51
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 50.51.3
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 50.51.(52 - 49)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 50.51.52 - 49.50.51
=> 3A = 50.51.52
=> A = 50.17.52
=> A = 44200
Vậy 1.2 + 2.3 + 3.4 + ... + 50.51 = 44200
A=2(1-3)+4(5-3)+ 6(5-7)+...+50(49-57)
A=-4-8-12-...-100 = -(4+8+12+...+100) (tính tổng cấp số cộng)
Ta có:A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
A=1-\(\dfrac{1}{51}=\dfrac{50}{51}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
\(A=\dfrac{1}{1}-\dfrac{1}{51}\)
\(A=\dfrac{50}{51}\)
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.2}\)+ ....+ \(\dfrac{1}{50.51}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{2}\)+...+ \(\dfrac{1}{50}\) - \(\dfrac{1}{51}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{51}\)
A = \(\dfrac{50}{51}\)
A = 1 /1.2 + 1/ 2.3 + 1 /3.4 + . . . + 1/ 49.50 + 1/ 50.51
A = 2 − 1/ 1.2 + 3 − 2 /2.3 + 4 − 3 /3.4 + . . . + 50 − 49 /49.50 + 51 − 50/ 50.51
A = 1 − 1/ 2 + 1/ 2 − 1 /3 + 1 /3 − 1/ 4 + . . . + 1 /50 − 1 /51
A=1-1/51
A=50/51
=43.61
Lời giải:
$A=1.2+2.3+3.4+...+50.51$
$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+...+50.51(52-49)$
$=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(0.1.2+1.2.3+2.3.4+....+49.50.51)$
$=50.51.52$
$\Rightarrow A=50.51.52:3=44200$