K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

vay tu di ma tinh

9 tháng 2 2017

Đặt A = 1.2 + 2.3 + 3.4 + ... + 50.51

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 50.51.3

=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 50.51.(52 - 49)

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 50.51.52 - 49.50.51

=> 3A = 50.51.52

=> A = 50.17.52

=> A = 44200

Vậy 1.2 + 2.3 + 3.4 + ... + 50.51 = 44200

5 tháng 4 2020

Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

Vì n là số nguyên khác 0; - 1

=> \(\frac{1}{n+1}\)không là số nguyên

=> \(Q=1-\frac{1}{n+1}\)không là số nguyên

5 tháng 4 2020

Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh  cũng cần cách  này ;

\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

rồi bắt đầu làm như cô Nguyễn Linh Chi

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

15 tháng 3 2016

sai đề 

15 tháng 3 2016

sai đề là cái chắc

26 tháng 10 2017

           S=1.2+2.3+3.4+4.5+...+98.99+99.100

suy ra :3S=1.2.3+2.3.3+3.4.3+4.5.3+...+98.99.3+99.100.3

            3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+98.99.(100-97)+99.100.(101-98)

           3S=1.2.3.0+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+98.99.100-97.98.99+99.100.101-98.99.100

           3S=99.100.101

Suy ra :S=99.100.10:3=333300

vậy S=333300

17 tháng 1 2017

ko bit

 A = 1.2 + 2.3 + 3.4 + ... + 2013.2014 
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2013.2014.3 
Mà : 
1.2.3 = 1.2.3 
2.3.3 = 2.3.4 - 2.3.1 
3.4.3 = 3.4.5 - 3.4.2 

2012.2013.3 = 2012.2013.2014 - 2012.2013.2011 
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012 
Cộng tất cả, vế theo vế ---> 3S = 2013.2014.2015 
---> A = 2013.2014.2015 / 3 = 2723058910.

của bạn đây

28 tháng 5 2016

Co 3A= (3-0).1.2+(4-1).2.3+...+(101-98).99.100

3A= 1.2.3-0.1.2+2.3.4-1.2.3+...+101.99.100-98.99.100

3A=101.100.99

A=101.100.33

A=333300

22 tháng 7 2021

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

24 tháng 9 2017

Gọi tổng là A

3.A=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+99.100(101-98)

=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(99.100.101-98.99.100)

=99.100.101-0.1.2(vì những số khác giản ước)

=999900-0

=999900

A=999900:3=333300

Vậy A=333300

12 tháng 10 2021

Đặt P = 1.2+2.3+3.4+...+99.100

3P = 1.2.3+2.3.3+3.4.3+...+99.100+3

3P = 1.2 (3-0) +2.3(4-1)+3.4(5-2) +...+ 99.100( 101-98)

3P = ( 1.2.3 + 2.3.4 + 3.4.5 + 99.100.101 ) -( 0.1.2 + 1.2.3 + 2.3.4 + ....+ 98.99.100)

3P = 99.100.101 - 0.1.2

3P = 999900 - 0

3P = 999900

P = 999900 : 3

P = 333300

13 tháng 7 2016

A= 1.2+2.3+3.4+...+2015.2016

3A=1.2.3+2.3.3+3.4.3+...+2015.2016.3

    =1.2.3+2.3.(4-1)+3.4.(5-2)+...+2015.2016.(2017-2014)

    =1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-2014.2015.2016+2015.2016.2017

    =2015.2016.2017

A=2015.2016.2017:3=2731179360