Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3n+2,n+1) = d
Ta có: 3n+2 chia hết cho d
n+1 chia hết cho d => 3n+3 chia hết cho d
=>3n+3-(3n+2) chia hết cho d
=>1 chia hết cho d
=> d = 1
=> UCLN(3n+2,n+1) = 1
Vậy......
ta có A\(=\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{1}{n+1}=3\)\(+\frac{1}{n+1}\)
Do 1 ko chia hết cho bất kì số nào thuộc Z ngoại trừ 1 và -1
=> \(\frac{1}{n+1}\)tối giản => A tối giản
Gọi ƯCLN(3n+4;n+1) là d.
=>3n+4 chia hết cho d và n+1 chia hết cho d.
=>3.(n+1) chia hết cho d
=>3n+4 ___________d và 3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.
1) Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố)
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn
Vậy r cũng không thể là hợp số
Kết luận: r=1
2)a) Tổng của ba hợp số khác nhau nhỏ nhất bằng :
4 + 6 + 8 = 18.
b) Gọi 2k+1 là một số lẻ bất kỳ lớn hơn 17. Ta luôn có 2k+1=4+9+(2k−12).
Cần chứng minh rằng 2k−12 là hợp số chẵn (hiển nhiên) lớn hơn 4 (dễ chứng minh).
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
Vì n là số nguyên khác 0; - 1
=> \(\frac{1}{n+1}\)không là số nguyên
=> \(Q=1-\frac{1}{n+1}\)không là số nguyên
Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh cũng cần cách này ;
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
rồi bắt đầu làm như cô Nguyễn Linh Chi