K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔDEF cân tại D có DH là đường cao

nên DH là đường trung tuyến ứng với cạnh EF
=>H là trung điểm của EF

=>HE=HF

29 tháng 7 2023

ΔDEF cân tại D có DH là đường cao

nên DH là đường trung tuyến ứng với cạnh EF
=>H là trung điểm của EF

=>HE=HF

Sửa đề: IK//DH

a: Xét ΔDEF vuông tại D và ΔHED vuông tại H có

góc E chung

=>ΔDEF đồng dạng với ΔHED
=>DF/DH=EF/DE=DE/HE

=>EH*EF=ED^2

b: Xét ΔFIK vuông tại I và ΔFDE vuông tại D có

góc F chung

=>ΔFIK đồng dạng với ΔFDE

=>FI/FD=FK/FE

=>FI*FE=FK*FD

c: góc KDE+góc KIE=180 độ

=>KDEI nội tiếp

=>góc DKE=góc DIE và góc DEK=góc DIK

mà góc DIE=góc DIK

nên góc DKE=góc DEK

=>ΔDEK cân tại D

a) Xét ΔDEN vuông tại N và ΔDFM vuông tại M có 

DE=DF(ΔDEF cân tại D)

\(\widehat{EDN}\) chung

Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)

Suy ra: DN=DM(hai cạnh tương ứng)

Xét ΔDEF có 

\(\dfrac{DM}{DE}=\dfrac{DN}{DF}\left(DM=DN;DE=DF\right)\)

nên MN//EF(Định lí Ta lét đảo)

Xét tứ giác EMNF có MN//EF(Cmt)

nên EMNF là hình thang

mà \(\widehat{MEF}=\widehat{NFE}\)(ΔDEF cân tại D)

nên EMNF là hình thang cân

b) Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

DM=DN(cmt)

Do đó: ΔDMH=ΔDNH(cạnh huyền-cạnh góc vuông)

c) Ta có: ΔDMH=ΔDNH(cmt)

nên HM=HN(hai cạnh tương ứng)

Ta có: DM=DN(cmt)

nên D nằm trên đường trung trực của MN(1)

Ta có: HM=HN(cmt)

nên H nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra DH là đường trung trực của MN

hay DH\(\perp\)MN

a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có 

DE=DF(ΔDEF cân tại D)

DH chung

Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)

Suy ra: HE=HF(hai cạnh tương ứng)

10 tháng 4 2020

lê anh tú ăn cứt

3 tháng 3 2021

Vô văn hóa

a) Xét ΔDEF vuông tại D và ΔHED vuông tại H có

\(\widehat{E}\) chung

Do đó: ΔDEF\(\sim\)ΔHED(g-g)

b) Ta có: ΔDEF\(\sim\)ΔHED(cmt)

nên \(\dfrac{DE}{HE}=\dfrac{EF}{ED}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(DE^2=EF\cdot EH\)(đpcm)

1: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của FE

hay HE=HF

EF=8cm

nên HE=4cm

=>DH=3cm

2: Xét ΔDEM và ΔDFN có 

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: EM=FN

3: Xét ΔNEF và ΔMFE có 

NE=MF

\(\widehat{NEF}=\widehat{MFE}\)

FE chung

Do đó:ΔNEF=ΔMFE

Suy ra: \(\widehat{KFE}=\widehat{KEF}\)

=>ΔKEF cân tại K

hay KE=KF

4: Ta có: DE=DF

nên D nằm trên đường trung trực của EF(1)

ta có: KE=KF

nên K nằm trên đường trung trực của EF(2)

ta có: HE=HF

nên H nằm trên đường trung trực của EF(3)

Từ (1), (2) và (3) suy ra D,K,H thẳng hàng

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì \(DH \bot EF \Rightarrow \widehat {DHE} = 90^\circ \)

Xét tam giác \(DEH\) và tam giác \(FDE\) ta có:

\(\widehat E\) chung

\(\widehat {DHE} = \widehat {EDF} = 90^\circ \).

Do đó, \(\Delta DEH\backsim\Delta FED\) (g.g)

Suy ra, \(\frac{{DE}}{{EF}} = \frac{{EH}}{{DE}} \Rightarrow D{E^2} = EF.EH\) (điều phải chứng minh).