K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có : 

\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\) 

+) Xét \(a>0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)

\(A=\frac{80a-40+15}{10a-5}\)

\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)

\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)

\(A=8+\frac{15}{10a-5}\)

Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay  \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)

Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Suy ra : 

\(10a-5\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(a\)\(\frac{3}{5}\)\(\frac{2}{5}\)\(\frac{4}{5}\)\(\frac{1}{5}\)\(1\)\(0\)\(2\)\(-1\)

Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)

+) Xét \(a=0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)

\(A=\frac{40\left|0-1\right|+15}{0-5}\)

\(A=\frac{40+15}{-5}\)

\(A=-11\) ( A nguyên ) 

Vậy \(a\in\left\{-1;0;1;2\right\}\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(\left|2a-1\right|=2a-1\)

\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)

Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)

Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)

\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)

\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)

\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)

Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)

29 tháng 4 2017

Đkxđ: a khác 0,5

\(A=\dfrac{\text{40|2a-1|+15}}{10a-5}=\dfrac{40\left|2a-1\right|+15}{5\left(2a-1\right)}=\dfrac{3}{2a-1}_-^+8\)

(Mình để cộng trừ 8 là do còn tùy vào 2a-1 dương hay âm nữa)

Để A nguyên thì \(\dfrac{3}{2a-1}\)nguyên <=>3 chia hết cho 2a-1 <=>2a-1 là Ư(3)

Mà Ư(3)={-3;-1;1;3}

Ta có bảng sau:

2a-1 -3 -1 1 3
a -1 0 1 2

Do a là số tự nhiên và a khác 0,5=>a={0;1;2} thì A nguyên

22 tháng 4 2018

Câu 1:

Trong 4 điểm ta chọn được 4 điểm làm đỉnh thứ nhất của tam giác, sau đó ta còn 3 điểm cho đỉnh thứ hai và 2 điểm cho đỉnh thứ ba.

Mà nếu như vậy thì mỗi tam giác bị lặp lại đúng sáu lần. Cho nên ta có công thức tính tam giác là:

\(\frac{4.3.2}{6}=\frac{24}{6}=4\)( tam giác )

Mình không hiểu rõ câu hỏi của cậu lắm nên cứ đọc đỡ tham khảo cách tính tam giác của mình nhé!

Câu 2

Vì \(|2a-1|\ge0\)với mọi a.

=> \(2a-1< 0\)hoặc \(2a-1\ge0\)

Vậy ta có hai trường hợp

TH1: Nếu 2a - 1 < 0 ( với ĐK: a <1/2 )

=> \(\frac{40|2a-1|+15}{10a-5}=\frac{40\left(-2a+1\right)+15}{10a-5}\)

\(=\frac{-40\left(2a-1\right)+15}{10a-5}\)

\(=\frac{-40\left(2a-1\right)+15}{5\left(2a-1\right)}\)

\(=\frac{-40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)

\(=-8+\frac{3}{2a-1}\)

Vì -8 thuộc Z

=> Để biểu thức trên có giá trị nguyên thì \(\frac{3}{2a-1}\)phải thuộc Z.

=> \(3⋮2a-1\)

=> 2a -1 thuộc Ư(3)

=> 2a - 1 thuộc { 1;-1;3;-3 }

=> 2a thuộc { 2;0;4;-2}

=> a thuộc { 1;0;2;-1 }

Đối chiếu với ĐK a < 1/2 thì chỉ có 0 và -1 thỏa mãn

=> x = 0 ; x = -1

TH2: Nếu \(2a-1\ge0\)( với ĐK: a > hoặc bằng 1/2 )

\(=>\frac{40|2a-1|+15}{10a-5}=\frac{40\left(2a-1\right)+15}{5\left(2a-1\right)}\)

\(=\frac{40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)

\(=8+\frac{3}{2a-1}\)

Vì 8 thuộc Z

=> Để biểu thức trên có giá trị nguyên thì 3/2a-1 phải thuộc Z

=> 3 chia hết cho 2a - 1

=> 2a-1 thuộc Ư(3)

=> 2a - 1 thuộc { 1;-1;3;-3 }

=> 2a thuộc { 2;0;4;-2}

=> a thuộc {1;0;2;-1}

Đối chiếu điều kiện a lớn hơn hoặc bằng 1/2 thì 1 và 2 thỏa mãn.

22 tháng 4 2018

1) đáp án D

2) mình hôm nay lười lắm éo muốn làm thông cảm

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

11 tháng 12 2019

Ta có :

\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

a) Giá trị của biểu thức A xác định 

\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)

Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

b) Ta có :

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)

\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)

c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :

\(A=\frac{-1-1}{2}=-1\)

Vậy tại a = -1 thì giá trị của biểu thức A là - 1

d) Cho A = 0 , ta có :

\(\frac{a-1}{2}=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )

Vậy a = 1 thì giá trị của biểu thức A = 0 .

10 tháng 12 2019

\(a.ĐKXĐ:\)\(2a+10\ne0\)            \(a\ne-5\)

                 \(a\ne0\)               \(\Leftrightarrow\)\(a\ne0\)     \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

                 \(2a\left(a+5\right)\ne0\)        \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

     \(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

   \(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)   

   \(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)

   \(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\) 

   \(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)

\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)

                                          \(=-1\left(t/mđk\right)\)

\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)

                    \(\Rightarrow a-1=2.0\)

                    \(\Rightarrow a-1=0\)

                    \(\Rightarrow a=1\left(t/mđk\right)\)

22 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.