K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Ta có :

\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

a) Giá trị của biểu thức A xác định 

\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)

Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

b) Ta có :

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)

\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)

c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :

\(A=\frac{-1-1}{2}=-1\)

Vậy tại a = -1 thì giá trị của biểu thức A là - 1

d) Cho A = 0 , ta có :

\(\frac{a-1}{2}=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )

Vậy a = 1 thì giá trị của biểu thức A = 0 .

10 tháng 12 2019

\(a.ĐKXĐ:\)\(2a+10\ne0\)            \(a\ne-5\)

                 \(a\ne0\)               \(\Leftrightarrow\)\(a\ne0\)     \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

                 \(2a\left(a+5\right)\ne0\)        \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

     \(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

   \(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)   

   \(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)

   \(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\) 

   \(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)

\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)

                                          \(=-1\left(t/mđk\right)\)

\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)

                    \(\Rightarrow a-1=2.0\)

                    \(\Rightarrow a-1=0\)

                    \(\Rightarrow a=1\left(t/mđk\right)\)

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

10 tháng 1 2021

a) ĐKXĐ: a2-1 ≠0 ⇔ (a-1)(a+1)≠0 ⇔\(\left[{}\begin{matrix}a-1\ne0\\a+1\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ne1\\a\ne-1\end{matrix}\right.\)

b) A=\(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\) , a≠1, -1

      =\(\dfrac{2a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2-a\left(a-1\right)+a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2-a^2+a+a^2+a}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2+2a}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a}{a-1}\)

vậy A =\(\dfrac{2a}{a-1}\) với a≠1,-1.

c) Có:A= \(\dfrac{2a}{a-1}\) = \(\dfrac{2a-2+2}{a-1}=\dfrac{2\left(a-1\right)+2}{a-1}=2+\dfrac{2}{a-1}\)

Để a∈Z thì a-1 ∈ Z ⇒ (a-1) ∈ Ư(2) =\(\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

a-11-12-2
a203-1
Thử lạiTMTMTMko TM(vì a≠-1

Vậy để biểu thức A có giá trị nguyên thì a∈\(\left\{2;0;3\right\}\)

 

a) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)

b) Ta có: \(A=\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\)

\(=\dfrac{2a^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}+\dfrac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a^2-a^2+a+a^2+a}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a^2+2a}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a}{a-1}\)

c) Để A nguyên thì \(2a⋮a-1\)

\(\Leftrightarrow2a-2+2⋮a-1\)

mà \(2a-2⋮a-1\)

nên \(2⋮a-1\)

\(\Leftrightarrow a-1\inƯ\left(2\right)\)

\(\Leftrightarrow a-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{0;2;3\right\}\)

Vậy: Để A nguyên thì \(a\in\left\{0;2;3\right\}\)

8 tháng 12 2019

a) Để P xác định \(\Leftrightarrow\hept{\begin{cases}2a-2\ne0\\2-2a^2\ne0\\a+2\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a^2\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1vâ\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)

b) \(P=\left(\frac{a+1}{2a-2}+\frac{1}{2-2a^2}\right).\frac{2a+2}{a+2}\)

\(=\left[\frac{a+1}{2\left(a-1\right)}+\frac{1}{2\left(1-a\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\left[\frac{\left(a+1\right)^2}{2\left(a-1\right)\left(a+1\right)}-\frac{1}{2\left(a-1\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{\left(a+1\right)^2-1}{2\left(a-1\right)\left(a+1\right)}.\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{a\left(a+2\right)}{\left(a-1\right)\left(a+2\right)}\)

\(=\frac{a}{a-1}\)

c) \(\left|a\right|=3\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

+) Với a=3 thỏa mãn \(\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)nên thay a=3 vào P ta được:

( làm nốt)

TH kia tương tự

20 tháng 5 2019

a) a ≠ 0 ,    a ≠   − 5  

b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2  

c) Thay a = -1 (TMĐK) vào a ta được A = -1

d) Ta có A = 0 Û a = 1 (TMĐK)

21 tháng 8 2023

a) ĐK: \(x\ne4,x\ne2;x\ne-2\)

b) \(A=\dfrac{x^3}{x-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)

\(A=\dfrac{x^3}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^3-x^2-2x-2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{\left(x-1\right)\left(x^2-4\right)}{x^2-4}\)

\(A=x-1\)

c) \(A=0\) khi:

\(x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

d) A dương khi: \(A>0\)

\(x-1>0\)

\(\Leftrightarrow x>1\)

Kết hợp với đk: 

\(x>1,x\ne4,x\ne2\)