K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có : 

\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\) 

+) Xét \(a>0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)

\(A=\frac{80a-40+15}{10a-5}\)

\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)

\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)

\(A=8+\frac{15}{10a-5}\)

Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay  \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)

Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Suy ra : 

\(10a-5\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(a\)\(\frac{3}{5}\)\(\frac{2}{5}\)\(\frac{4}{5}\)\(\frac{1}{5}\)\(1\)\(0\)\(2\)\(-1\)

Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)

+) Xét \(a=0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)

\(A=\frac{40\left|0-1\right|+15}{0-5}\)

\(A=\frac{40+15}{-5}\)

\(A=-11\) ( A nguyên ) 

Vậy \(a\in\left\{-1;0;1;2\right\}\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(\left|2a-1\right|=2a-1\)

\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)

Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)

Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)

\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)

\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)

\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)

Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)

22 tháng 4 2018

Câu 1:

Trong 4 điểm ta chọn được 4 điểm làm đỉnh thứ nhất của tam giác, sau đó ta còn 3 điểm cho đỉnh thứ hai và 2 điểm cho đỉnh thứ ba.

Mà nếu như vậy thì mỗi tam giác bị lặp lại đúng sáu lần. Cho nên ta có công thức tính tam giác là:

\(\frac{4.3.2}{6}=\frac{24}{6}=4\)( tam giác )

Mình không hiểu rõ câu hỏi của cậu lắm nên cứ đọc đỡ tham khảo cách tính tam giác của mình nhé!

Câu 2

Vì \(|2a-1|\ge0\)với mọi a.

=> \(2a-1< 0\)hoặc \(2a-1\ge0\)

Vậy ta có hai trường hợp

TH1: Nếu 2a - 1 < 0 ( với ĐK: a <1/2 )

=> \(\frac{40|2a-1|+15}{10a-5}=\frac{40\left(-2a+1\right)+15}{10a-5}\)

\(=\frac{-40\left(2a-1\right)+15}{10a-5}\)

\(=\frac{-40\left(2a-1\right)+15}{5\left(2a-1\right)}\)

\(=\frac{-40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)

\(=-8+\frac{3}{2a-1}\)

Vì -8 thuộc Z

=> Để biểu thức trên có giá trị nguyên thì \(\frac{3}{2a-1}\)phải thuộc Z.

=> \(3⋮2a-1\)

=> 2a -1 thuộc Ư(3)

=> 2a - 1 thuộc { 1;-1;3;-3 }

=> 2a thuộc { 2;0;4;-2}

=> a thuộc { 1;0;2;-1 }

Đối chiếu với ĐK a < 1/2 thì chỉ có 0 và -1 thỏa mãn

=> x = 0 ; x = -1

TH2: Nếu \(2a-1\ge0\)( với ĐK: a > hoặc bằng 1/2 )

\(=>\frac{40|2a-1|+15}{10a-5}=\frac{40\left(2a-1\right)+15}{5\left(2a-1\right)}\)

\(=\frac{40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)

\(=8+\frac{3}{2a-1}\)

Vì 8 thuộc Z

=> Để biểu thức trên có giá trị nguyên thì 3/2a-1 phải thuộc Z

=> 3 chia hết cho 2a - 1

=> 2a-1 thuộc Ư(3)

=> 2a - 1 thuộc { 1;-1;3;-3 }

=> 2a thuộc { 2;0;4;-2}

=> a thuộc {1;0;2;-1}

Đối chiếu điều kiện a lớn hơn hoặc bằng 1/2 thì 1 và 2 thỏa mãn.

22 tháng 4 2018

1) đáp án D

2) mình hôm nay lười lắm éo muốn làm thông cảm

29 tháng 3 2018

nhanh lên mình đang cần gấp

13 tháng 3 2017

tui bít câu 2

14 tháng 3 2017

3/ bạn lập bảng xét dấu là sẽ thấy có 4 trường hợp:

TH1: x<(-5/6), khi đó: -(2x+1)+[-(3-4x)]+[-(6x+5)]=2014

                                -2x-1-3+4x-6x-5=2014

                                -4x-9=2014

                                x=-2023/4 ( TM x<-5/6)

TH2: -5/6<=x<=-1/2, khi đó: 2x+1+[-(3-4x)]+[-(6x+5)]=2014

                                         2x+1-3+4x-6x-5=2014

                                         0x-7=2014 ( ko có giá trị x TM pt)

TH3:-1/2<=x<=3/4, khi đó:  2x+1+(3-4x)+[-(6x+5)]=2014

                                        2x+1+3-4x-6x-5=2014

                                        -8x-1=2014

                                        x=-2015/8 ( ko TM -1/2<=x<=3/4 )

TH4: x>3/4; khi đó: 2x+1+3-4x+6x+5=2014

                            4x+9=2014

                             x=2005/4( TM x>3/4)

thế là xong. cái nào TM thì lấy

ghi chú <= là nhỏ hơn hoặc bằng

2 tháng 5 2017

1)

\(\frac{3n+2}{n-1}\) là số nguyên khi \(\left(3n+2\right)⋮\left(n-1\right)\).

\(3n+2=3n-3+3+2=3\left(n-1\right)+5\)

Mà \(3\left(n-1\right)⋮\left(n-1\right)\) nên để \(\left[3\left(n-1\right)+5\right]⋮\left(n-1\right)\) thì \(5⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)\) hay \(\left(n-1\right)\in\) { -5; -1; 1; 5 }      ( Không viết được dấu ngoặc nhọn nên mình viết vậy nhé )

\(\Rightarrow n\in\)​ { -4; 0; 2; 6 }

Vậy \(n\in\)​ { -4; 0; 2; 6 }

2)

a)\(\frac{1}{6};\frac{1}{3};\frac{1}{2};...\)

Quy đồng mẫu các phân số ta có:

\(\frac{1}{6};\frac{2}{6};\frac{3}{6};...\)

\(\Rightarrow\)3 phân số tiếp theo là \(\frac{4}{6}\)hay \(\frac{2}{3}\)\(\frac{5}{6}\)và \(\frac{6}{6}\)hay 1.

Vậy 3 phân số tiếp theo là \(\frac{2}{3}\)\(\frac{5}{6}\)và 1.

b)

Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{7}{20};\frac{2}{5};\frac{9}{20}\).

c)

Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{11}{30};\frac{2}{5};\frac{13}{30}\)

15 tháng 8 2015

a ) Gọi STT của số là a . CTTQ là : n = a x (a + 3)

b ) 9898 thuộc dãy và 9898 = a x (a + 3) = 98 x 101 => 9898 thuôc vị trí thứ 98 của dãy