chứng tỏ phân số 12.n + 1 / 30.n + 2 là phân số tối giản ( n thuộc N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung của n+1 và n+2
Khi đó:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+1)-(n+2) chia hết cho d
=>1 chia hết cho d
=>n+1 và n+2 là 2 số nguyên tố cùng nhau
Vậy phân số n+1/n+2 là phân số tối giản
Gọi \(ƯCLN\)\(\left(\frac{n+1}{n+2}\right)\)là \(d\left(d\in Z\right)\)
\(\Rightarrow n+1\)chia hết cho \(d\)
\(\Rightarrow n+2\)chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+2\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)-1\left(n+2\right)\)chia hết cho \(d\)
\(\Rightarrow-1\) chia hết cho \(d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow d=\int^1_{-1}\)
Mà bạn này, lớp 5 đã học \(ƯCLN\) đâu nhỉ.
Gọi d là UC(30 x n + 2;12 x n + 1)
Ta có: 30 x n + 2 = 2.(30 x n + 2) = 60 x n + 4
12 x n + 1 = 5.(12 x n + 1) = 60 x n + 5
Vì d là UC(30 x n + 2;12 x n + 1) nên
=> 60 x n + 4 chia hết cho d
=> 60 x n + 5 chia hết cho d
=> (60 x n + 5) - (60 x n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = +1
Vậy p/s \(\frac{30.n+2}{12.n+1}\) là p/s tối giản
Gọi ƯCLN(n; n + 1) là d
=> n chia hết cho d
và n + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n; n + 1) = 1
Vậy n/n + 1 là phân số tối giản
Gọi d là ƯC(n+1 ; n+2)
=> n+1 chia hết cho d và n+2 chia hết cho d
=>(n+2)-(n+1) chia hết d
=> 1 chia hết d
=> D=1
Vậy n+1/n+2 là phân số tối giản
Để n+3/n-2 \(\in\) Z
=> n+3 chia hết n-2
=> n-2 + 5 chia hết n-2
=> 5 chia hết n-2
=> n-2 \(\in\) Ư(5)={-1;1;-5;5}
Ta có:
n-2 | -1 | 1 | -5 | 5 |
n | 1 | 3 | -3 | 7 |
Để phân số n+1/2n+1 là phân số tố giản thì ƯCLN(n+1,2n+1)=1
Giả sử ƯCLN(n+1,2n+1)=d
=>n+1 chia hết cho d
2n+1 chia hết cho d
=>2.(n+1) chia hết cho d
2n+1 chia hết cho d
=>2n+2 chia hết cho d
2n+1 chia hết cho d
=>(2n+2)-(2n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n+1,2n+1)=1
=>Phân số n+1/2n+1 là phân số tối giản
Vậy phân số n+1/2n+1 là phân số tối giản
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
Gọi ƯCLN(12n + 1,30n + 2) là d
Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d => d = 1
=> ƯCLN(12n + 1,30n + 2) = 1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản