Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(12n + 1,30n + 2) là d
Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d => d = 1
=> ƯCLN(12n + 1,30n + 2) = 1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Để phân số n+1/2n+1 là phân số tố giản thì ƯCLN(n+1,2n+1)=1
Giả sử ƯCLN(n+1,2n+1)=d
=>n+1 chia hết cho d
2n+1 chia hết cho d
=>2.(n+1) chia hết cho d
2n+1 chia hết cho d
=>2n+2 chia hết cho d
2n+1 chia hết cho d
=>(2n+2)-(2n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n+1,2n+1)=1
=>Phân số n+1/2n+1 là phân số tối giản
Vậy phân số n+1/2n+1 là phân số tối giản
Để 3n/3n+1 là p/s tối giản thì 3n,3n+1 là 2 số nguyên tố cùng nhau
g/s(3n,3n+1) = d
=>3n+1 : d và 3n : d (nhớ 3 dấu chấm dùm mình nhé chỗ chia )
=>3n+1 - 3n :d
=>1:d=>d =1
=>3n và 3n+1 là 2 số n tố cùng nhau
vậy 3n/3n+1 là p/s tối giản
Gọi d là ƯC(n+1 ; n+2)
=> n+1 chia hết cho d và n+2 chia hết cho d
=>(n+2)-(n+1) chia hết d
=> 1 chia hết d
=> D=1
Vậy n+1/n+2 là phân số tối giản
Để n+3/n-2 \(\in\) Z
=> n+3 chia hết n-2
=> n-2 + 5 chia hết n-2
=> 5 chia hết n-2
=> n-2 \(\in\) Ư(5)={-1;1;-5;5}
Ta có:
n-2 | -1 | 1 | -5 | 5 |
n | 1 | 3 | -3 | 7 |
Theo bài ra , ta có :
\(\frac{6n-7}{n-1}=\frac{6n-6-1}{n-1}=\frac{6\left(n-1\right)-1}{n-1}=\frac{6\left(n-1\right)}{n-1}-\frac{1}{n-1}=6-\frac{1}{n-1}\)
Mà \(\frac{1}{n-1}\)là phân số tối giản
\(\Rightarrow6-\frac{1}{n-1}\)là p/s tối giản
\(\Rightarrow\frac{6n-7}{n-1}\)là phân số tối giản (ĐPCM)
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
giả sử d là UCLN của n+1 và 2n+3
=>n+1 chia het cho d
=> 2n+2 chia hết cho d
=> 2n+3 chia hết cho d
=>1 chia hết cho d=>d=1
UCLN (n+1;2n+3)=1
=>(n+1) : (2n+3) là phân số tối giản
=> (dpcm)
Gọi d là ƯCLN của n+1 và 2n+3
Ta có: 2.(n+1)=2n+2
Mà 2n+3 - 2n+2 =1 Hay 1 chia hết cho d=> ƯCLN (n+1;2n+3)=1
=> n+1/2n+3 là phân số tối giản
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi ƯCLN(n+2018;n+2019) = a
Có n+2018 chia hết cho a
và n+2019 chia hết cho a
=> (n+2019)-(n+2018) chia hết cho a
=> 1 chia hết cho a
=> a = 1
ƯCLN(n+2018;n+2019) = 1
=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản
Gọi ƯCLN(n; n + 1) là d
=> n chia hết cho d
và n + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n; n + 1) = 1
Vậy n/n + 1 là phân số tối giản