chứng tỏ A = n3 + 2n và B = n4 + 3n2 + 1 là 2 số nguyên tố cùng nhau với mọi n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d\inƯCLN\left(2n+1;6n+5\right)d∈ƯCLN(2n+1;6n+5) nên ta có :
2n+1⋮d2n+1⋮d và 6n+5⋮d6n+5⋮d
\Leftrightarrow3\left(2n+1\right)⋮d⇔3(2n+1)⋮d và 6n+5⋮d6n+5⋮d
\Leftrightarrow6n+3⋮d⇔6n+3⋮d và 6n+5⋮d6n+5⋮d
\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d⇒(6n+5)−(6n+3)⋮d
\Rightarrow2⋮d\Rightarrow d=2⇒2⋮d⇒d=2
Mà 2n+1;6n+52n+1;6n+5 là các số lẻ nên không thể có ước là 2
\Rightarrow d=1⇒d=1
\Rightarrow2n+1⇒2n+1 và 6n+56n+5 là nguyên tố cùng nhau
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
Gọi d là ước chung của 3n+2 và 2n+1 nên
\(3n+2⋮d\Rightarrow2\left(3n+2\right)=6n+4⋮d\)
\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)=1⋮d\Rightarrow d=1\)
=> 3n+2 và 2n+1 nguyên tố cùng nhau với mọi n
Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)
=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 2 chia hết cho d
Mà 2n + 1 lẻ => d lẻ => d = 1
=> ƯCLN(2n + 1; 2n + 3) = 1
Chứng tỏ ...
Chứng tỏ rằng (2n+1) và (2n+3) là cặp số nguyên tố cùng nhau với mọi số tự nhiên n.
Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)
=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2 chia hết cho d
Mà 2n + 1 lẻ => d lẻ => d = 1
=> ƯCLN(2n + 1; 2n + 3) = 1
CHứng tỏ
Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d
6n+5 chia hết d
= 3.(2n+1) chia hết d
6n+5 chia hết d
=6n+3 chia hết d
6n+5 chia hết d
(6n+5)-(6n+3) chia hết d
=2 chia hết d
d=1;2
Mà 6n+5 không chia hết 2; suy ra d=1
Vậy 6n+5 và 2n+1 nguyên tố cùng nhau
kick hộ mình nhé
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
gọi d là ước chung lớn nhất của A và B
A chia hết cho d
B chia hết cho d
=>A-B chia hết cho d
=>(n^4+3n^2+1) -(n^3+2n)-chia hết d
=>(n^4+3n^2+1) -n.(n^3+2n)chia hết d
=>((n^4+3n^2+1) - (n^4+3n^2)chia hết d
=>n^4+3n^2+1-n^4-3n^2 chia hết d
=>1chia hết d
=>d thuộc Ư(1)={1}
vậy A và B là 2 số nguyên tố cùng nhau
Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath