Tìm GTNN của biểu thức D= 2x^2-4x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
\(M=\left|2x-3\right|+\frac{\left|4x-1\right|}{2}\Rightarrow2M=\left|4x-6\right|+\left|4x-1\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) . Dấu đẳng thức xảy ra khi a,b cùng dấu.
Được : \(2M=\left|6-4x\right|+\left|4x-1\right|\ge\left|6-4x+4x-1\right|=5\) \(\Rightarrow2M\ge5\)
\(\Rightarrow M\ge\frac{5}{2}\) . Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}6-4x\ge0\\4x-1\ge0\end{cases}\)\(\Leftrightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
Vậy Min M = \(\frac{5}{2}\Leftrightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
x^4- 2x^ba-4x >hoặc = 0
x^4-2x^ba-4x+5>hoặc bằng 5
dấu = xảy ra khi x^4-2x^ba-4x=0 suy ra x=0
vậy giá trị nhỏ nhất của bt trên là 5 tại x=0
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
D = 2x2 - 4x + 3
= 2(x2 - 2x) + 3
= 2(x2 - 2x + 1) + 1
= 2(x - 1)2 + 1
Có 2(x - 1)2 \(\ge\)0 với mọi x
=> 2(x - 1)2 + 1 \(\ge\)1 với mọi x
=> D \(\ge\)1 với mọi x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
KL: Dmin = 1 <=> x = 1