Cho tam giác ABC vuông tại A,đường cao AH.biết AB/AC=3/5,AH=30cm.tính độ dài các đoạn thẳng HB,HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài làm tương tự :
dùng Pitago đảo thử từng cặp 1
ta có:
(b−c)2+h2
=b2+c2−2bc+h2(b−c)2+h2
=b2+c2−2bc+h2(1)
vì tam giác ABC vuông ở A có đường cao AH nên
a2=b2+c2a2=b2+c2vàAB.AB
=AH.BC=2SAB.AB
=AH.BC
=2Shayb.c
=a.hb.c=a.h
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=15(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5.4\left(cm\right)\\CH=9.6\left(cm\right)\end{matrix}\right.\)
\(\dfrac{AB}{AC}=\dfrac{5}{7}\Rightarrow AB=\dfrac{5AC}{7}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5}{7}AC\right)^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow AC^2=666\Rightarrow AC=3\sqrt{74}\)
\(\Rightarrow AB=\dfrac{15\sqrt{74}}{7}\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\dfrac{222}{7}\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=21\left(cm\right)\)
\(CH=BC-BH=\dfrac{75}{7}\left(cm\right)\)
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH^2+16HB-225=0\)
hay BH=9(cm)
\(\Leftrightarrow AC=20cm\)
hay AH=12cm
Ta có: \(AB^2=HB\cdot HC\)
\(\Leftrightarrow HB\left(HB+16\right)=225\)
\(\Leftrightarrow HB^2+16HB-225=0\)
\(\Leftrightarrow HB=9\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)
\(\Leftrightarrow AH=12\left(cm\right)\)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+9^2=117\)
hay \(BC=3\sqrt{13}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{12\sqrt{13}}{13}\left(cm\right)\\CH=\dfrac{27\sqrt{13}}{13}\left(cm\right)\\AH=\dfrac{18\sqrt{13}}{13}\left(cm\right)\end{matrix}\right.\)
a: BC=căn 6^2+9^2=3*căn 13cm
AH=6*9/3*căn 13=18/căn 13(cm)
BH=AB^2/BC=12/căn 13(cm)
CH=9^2/3*căn 13=27/căn 13(cm)
b: BC=AB^2/BH=25cm
CH=25-9=16cm
AC=căn 16*25=20cm
c: AB=căn 55^2-44^2=33cm
AH=33*44/55=26,4(cm)
BH=33^2/55=19,8cm
CH=55-19,8=35,2cm
d: CH=căn 40^2-24^2=32cm
BC=AC^2/CH=50cm
AB=căn 50^2-40^2=30cm
BH=50-32=18cm
e: HB=AH^2/HC=7,2cm
BC=7,2+12,8=20cm
AB=căn 7,2*20=12(cm)
AC=căn 12,8*20=16(cm)
f: AH=căn 72*12,5=30(cm)
BC=BH+CH=84,5cm
AB=căn 12,5*84,5=32,5cm
AC=căn 84,5^2-32,5^2=78cm