Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH^2+16HB-225=0\)
hay BH=9(cm)
\(\Leftrightarrow AC=20cm\)
hay AH=12cm
Đặt BC=x \(\Rightarrow\)BH=x-16
\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25
\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)
AC=\(\sqrt{BC^2-AB^2}\)=20(cm)
AH=\(\sqrt{BH.HC}\)=12(cm
1)
a) Xét ΔABC có
\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)
Vậy: AH=3,6cm
b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)
hay CH=2,7(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH=BC-CH=7,5-2,7=4,8(cm)
Vậy: BH=4,8cm; CH=2,7cm
1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go
=>\(\Delta ABC\) vuông tại A
Ta có: AB.AC=BC.AH
=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\) (cm)
AB^2=BH*BC
=>BH(BH+16)=225
=>BH^2+16HB-225=0
=>BH=9cm
BC=9+16=25cm
AH=căn 16*9=12cm
AC=căn 16*25=20cm
AH=căn 12^2-9^2=3*căn 7(cm)
CH=AH^2/HB=9*7/9=7(cm)
BC=9+7=16cm
AC=căn CH*BC=4*căn 7(cm)
Xét tam giác \(ABH\) vuông tại H có
\(AH^2+HB^2=AB^2\left(Pytago\right)\)
\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Xét tam giác ABC vuông tại A
\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ABC có:
AC2 = CH.BC = 16.BC
AB2 + AC2 = BC2
⇔ 152 + 16.BC = BC2
⇔ BC2 - 16.BC - 225 = 0
⇔ BC2 - 25BC + 9BC - 225 = 0
⇔ BC(BC - 25) + 9(BC - 25) = 0
⇔ (BC - 25)(BC + 9) = 0
⇔ BC = 25 hoặc BC = -9 (loại)
=> AC2 = 16.BC = 16.25 = 400
=> AC = 20
+ Xét tam giác vuông ABC có: AH.BC = AB.AC (hệ thức lượng)
Vậy BC = 25 (cm); AC = 20 (cm); AH = 12 (cm)
bài làm tương tự :
dùng Pitago đảo thử từng cặp 1
ta có:
(b−c)2+h2
=b2+c2−2bc+h2(b−c)2+h2
=b2+c2−2bc+h2(1)
vì tam giác ABC vuông ở A có đường cao AH nên
a2=b2+c2a2=b2+c2vàAB.AB
=AH.BC=2SAB.AB
=AH.BC
=2Shayb.c
=a.hb.c=a.h
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
Ta có: \(AB^2=HB\cdot HC\)
\(\Leftrightarrow HB\left(HB+16\right)=225\)
\(\Leftrightarrow HB^2+16HB-225=0\)
\(\Leftrightarrow HB=9\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)
\(\Leftrightarrow AH=12\left(cm\right)\)