cho a+b+c=0và a^2+b^2+c^2=10
tính a^4+b^4+c^4
mình làm rồi nhưng xem các bạn làm đc ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Có: a/b < c/d => ad < bc
Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0
=> a.(b+d) < b.(a+c)
=> a/b < a+c/b+d
c, Đề phải là cho a+b+c = 2016 chứ bạn
Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a
Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0
=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1
Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1
=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2
=> 1 < A < 2
=> A ko phải là số tự nhiên
Tk mk nha
a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.
TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
bài 1
Ta có A+B=a + b - 5-b - c + 1= a-c+4(1)
C - D=b-c-4-b+a = a-c+4
(2)
từ 1 và 2 ➙A + B = C - D
\(a,2x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\in\forall Z\\x=1\end{cases}}}\)
\(b,x\left(2x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
\(c;\left(x+1\right)+\left(x+3\right)+...............+\left(x+99\right)=0\)
\(\Rightarrow\left(x+x+...........+x\right)+\left(1+3+............+99\right)=0\)
\(\Rightarrow50x+2500=0\)
\(\Rightarrow50x=-2500\)
\(\Rightarrow x=-50\)
2/
\(a;\left(x-3\right)\left(2y+1\right)=7\)
\(\Rightarrow\left(x-3\right);\left(2y+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét bảng
x-3 | 1 | -1 | 7 | -7 |
2y+1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
Vậy...............................
\(b;xy+3x-2y=11\)
\(\Rightarrow x\left(y+3\right)-2y-6=11-6\)
\(\Rightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y+3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng'
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
Vậy................................
\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Mk làm thế này ko bit có đúng ko?
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right).\)
\(\Rightarrow ab+bc+ac=-5\)
\(\Rightarrow\left(ab+bc+ac\right)^2=25\Rightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=25.\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=25.\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=25\)
Mặt khác:
\(a^2+b^2+c^2=10\Rightarrow\left(a^2+b^2+c^2\right)^2=100\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\Rightarrow a^4+b^4+c^4+50=100\)
\(\Rightarrow a^4+b^4+c^4=50\).
sai rồi bạn ơi