K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

GTNN=13 khi a=2, b=3, c=4

 

16 tháng 5 2022

Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.

a+4/a>=2*căn a*4/a=4

b+9/b>=2*căn b*9/b=6

c+16/c>=2*căn c*16/c=8

=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8

a+2b+3c>=20

=>a/4+b/2+3c/4>=5

=>S>=13

Dấu = xảy ra khi a=2; b=3; c=4

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

15 tháng 11 2021

\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

30 tháng 12 2021

\(4M=\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{4}{\left(c+a\right)+\left(b+c\right)}\)

\(\le\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\)

\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

=> 8M \(\le\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=8\)

=> \(M\le1\)

Dấu "=" xảy ra <=> a = b = c = 3/4 

NV
30 tháng 12 2021

\(\dfrac{1}{2a+b+c}=\dfrac{1}{a+a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự:

\(\dfrac{1}{a+2b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)

Cộng vế:

\(M\le\dfrac{1}{16}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(M_{max}=1\)  khi \(a=b=c=\dfrac{3}{4}\)

19 tháng 5 2022

Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)

Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2