xy=z , yz = 4x , xz=9y tìm x , y , z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=z\)
\(yz=4x\)
\(xz=9y\)
suy ra: \(xy.yz.xz=z.4x.9y\)
\(\Rightarrow\)\(x^2y^2z^2=36xyz\)
\(\Rightarrow\)\(xyz=36\)
Vì \(xy=z\)\(\Rightarrow\)\(z^2=36\)\(\Rightarrow\)\(z=\pm6\)
\(yz=4x\)\(\Rightarrow\)\(4x^2=36\)\(\Rightarrow\)\(x=\pm3\)
\(xz=9y\)\(\Rightarrow\)\(9y^2=36\)\(\Rightarrow\)\(y=\pm2\)
P/s: mk ko chắc lm đúng, you tham khảo
P/S đúng rồi đó, nếu kết luận như bạn có 8 cặp, nhưng chỉ có 4 cặp đúng
Nhân cả 3 vế pt ta được:
\(\left(xyz\right)^2=36xyz\)
Với \(xyz=0\) ta được: \(x=y=z=0\)
Với \(xyz\ne0\) chia cả 2 vế pt cho \(xyz\) ta được:
\(xyz=36\) ta được: \(\left\{{}\begin{matrix}xyz=z^2\\xyz=4x^2\\xyz=9y^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z^2=36\\x^2=9\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\pm6\\x=\pm3\\y=\pm2\end{matrix}\right.\)
Ta có:
4x = zy
4x = (xy)y
4x=xyy
4x = xy2
=> 4 = y2
=> y = 2 hoặc y = -2
xz = 9y
x(xy)=9y
xxy = 9y
x2y = 9y
=> x2 = 9
x = 3 hoặc x = -3
Ta có z = x.y = 3.2 = 3.(-2) = (-3).2 = (-3).(-2)
=> z = 6 hoặc z = -6
Vậy y = 2 hoặc -2
z = 6 hoặc z = -6
x = 3 hoặc x = -3
Đúng k nhờ :v
(xy).(yz).(zx) = z. (4x).(9y) => (xyz) 2 = 36.(xyz)
=> (xyz) 2 - 36.(xyz) = 0
=> (xyz).(xyz - 36) = 0
=> xyz = 0 hoặc xyz - 36 = 0
+) xyz = 0 .Đề cho => x = y = z = 0
+) xyz - 36 = 0 => xyz = 36 mà xy = z nên z.z = 36 => z = 6
Ta có yz = 4x => xyz = x.4x = 36
=> x.x = 9
=> x = 3
=> y = 36 : xz = 36 : 18 = 2
yz=4x <=> yz:xy=4x:xy <=> z:x=4:y Mà z=xy => xy:x=4:x =>y=4:y
=>\(y = {4\over y}\) => \(y^2 =\)\({4\over y}\)xy=4 =>\(y\in\left\{2;-2\right\}\)
Vì xy=z => \(x^2y\)=9y => \(x^2\)= 9
\(x^2\)= 9 => x\(\in\)\(\left\{3;-3\right\}\)
mà z=xy
rùi bạn tự giải típ nha mình phải đi ngủ :)
Ta có: (xy).(yz).(zx)=z.(4x).(9y)
=> (xyz)^2=36.xyz
=> (xyz)^2-36.xyz=0
=>(xyz).(xyz-36)=0
=> xyz=0 hoặc xyz-36=0
Nếu xyz=0 kết hợp đề bài => x=y=z=0
Nếu xyz-36=0 => xyz=36.
Mà xy=z=> z.z=36=>z^2=36=> z=6 hoặc -6
yz=4x=> xyz=x.4x=>36=4.x^2=>x^2=9=> x=3 hoặc -3
zx=9y=>xyz=y.9y=>36=9.y^2=>y^2=4=> y= 2 hoặc -2
Vậy...........
Đây,đây,đây:
{x;y;z}={0,0,0};{3,2,6};{-3;2;-3};{3;-2;-6};{-3;-2;6}
Vì xy = z
suy ra:
yz=yxy=4x
suy ra : yy=4
y =2
suy ra x=3
suy ra z=6