Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây,đây,đây:
{x;y;z}={0,0,0};{3,2,6};{-3;2;-3};{3;-2;-6};{-3;-2;6}
Vì xy = z
suy ra:
yz=yxy=4x
suy ra : yy=4
y =2
suy ra x=3
suy ra z=6
Ta có: (xy).(yz).(zx)=z.(4x).(9y)
=> (xyz)^2=36.xyz
=> (xyz)^2-36.xyz=0
=>(xyz).(xyz-36)=0
=> xyz=0 hoặc xyz-36=0
Nếu xyz=0 kết hợp đề bài => x=y=z=0
Nếu xyz-36=0 => xyz=36.
Mà xy=z=> z.z=36=>z^2=36=> z=6 hoặc -6
yz=4x=> xyz=x.4x=>36=4.x^2=>x^2=9=> x=3 hoặc -3
zx=9y=>xyz=y.9y=>36=9.y^2=>y^2=4=> y= 2 hoặc -2
Vậy...........
Nhân cả 3 vế pt ta được:
\(\left(xyz\right)^2=36xyz\)
Với \(xyz=0\) ta được: \(x=y=z=0\)
Với \(xyz\ne0\) chia cả 2 vế pt cho \(xyz\) ta được:
\(xyz=36\) ta được: \(\left\{{}\begin{matrix}xyz=z^2\\xyz=4x^2\\xyz=9y^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z^2=36\\x^2=9\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\pm6\\x=\pm3\\y=\pm2\end{matrix}\right.\)
(xy).(yz).(zx) = z. (4x).(9y) => (xyz) 2 = 36.(xyz)
=> (xyz) 2 - 36.(xyz) = 0
=> (xyz).(xyz - 36) = 0
=> xyz = 0 hoặc xyz - 36 = 0
+) xyz = 0 .Đề cho => x = y = z = 0
+) xyz - 36 = 0 => xyz = 36 mà xy = z nên z.z = 36 => z = 6
Ta có yz = 4x => xyz = x.4x = 36
=> x.x = 9
=> x = 3
=> y = 36 : xz = 36 : 18 = 2
yz=4x <=> yz:xy=4x:xy <=> z:x=4:y Mà z=xy => xy:x=4:x =>y=4:y
=>\(y = {4\over y}\) => \(y^2 =\)\({4\over y}\)xy=4 =>\(y\in\left\{2;-2\right\}\)
Vì xy=z => \(x^2y\)=9y => \(x^2\)= 9
\(x^2\)= 9 => x\(\in\)\(\left\{3;-3\right\}\)
mà z=xy
rùi bạn tự giải típ nha mình phải đi ngủ :)
a) \(xy=z;yz=4x;xz=9y\Rightarrow xy.yz.xz=z.4x.9y\Rightarrow\left(xyz\right)^2=36xyz\Rightarrow xyz=36\)
Đấy rồi bạn tự thay giá trị vào tìm ra x;y;z
b) Bài này chắc là rút gọn
\(\frac{2x+9}{x+3}+\frac{5x+17}{x+3}-\frac{3x}{x+3}=\frac{2x+9+5x+17-3x}{x+3}=\frac{4x+26}{x+3}=4+\frac{14}{x+3}\)
Giải:
Nhân từng vế ba đẳng thức ta được : \((xyz)^2=36xyz\)
Nếu một trong các số x,y,z bằng 0 thì hai số còn lại cũng bằng 0
Nếu cả ba số x,y,z \(\ne\)0 thì chia hai vế cho xyz được xyz = 36.Từ xyz = 36 và xy = z ta được z2 = 36 nên z = \(\pm6\). Từ xyz = 36 và yz = 4x ta được 4x2 = 36 nên x = \(\pm3\). Từ xyz = 36 và zx = 9y , ta được 9y2 = 36 nên y = \(\pm2\)
Nếu z = 6 thì x và y cùng dấu nên x = 3 , y = 2 , hoặc x = -3 , y = -2.Nếu z = -6 thì a và b trái dấu nên x = 3 , y = -2 hoặc x = -3 , y = 2
Tóm lại,có 5 bộ số \((x;y;z)\)thỏa mãn bài toán là :
\((0;0;0),(3;2;6),(-3;-2;6),(3;-2;-6),(-3;2;-6)\)
xy =z; yz = 4x; zx =9y
=> xy.yz.zx = z.4x.9y
(xyz)2 = 36xyz
=> xyz =36
( đến đây mik lm tắt nhé)
=> x= \(\pm\)3
y = \(\pm\)2
z = \(\pm\)6
\(xy=z\)
\(yz=4x\)
\(xz=9y\)
suy ra: \(xy.yz.xz=z.4x.9y\)
\(\Rightarrow\)\(x^2y^2z^2=36xyz\)
\(\Rightarrow\)\(xyz=36\)
Vì \(xy=z\)\(\Rightarrow\)\(z^2=36\)\(\Rightarrow\)\(z=\pm6\)
\(yz=4x\)\(\Rightarrow\)\(4x^2=36\)\(\Rightarrow\)\(x=\pm3\)
\(xz=9y\)\(\Rightarrow\)\(9y^2=36\)\(\Rightarrow\)\(y=\pm2\)
P/s: mk ko chắc lm đúng, you tham khảo
P/S đúng rồi đó, nếu kết luận như bạn có 8 cặp, nhưng chỉ có 4 cặp đúng