Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các điểm A − 1 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; − 2 có phương trình là
A. − 2 x + y − z − 2 = 0
B. − 2 x + y + z − 2 = 0
C. − 2 x − y − z + 2 = 0
D. − 2 x + y − z + 2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Hình chiếu của A(1 ;2 ;3) lên trục Ox là M(1;0;0)
Hình chiếu của A(1 ;2 ;3) lên trục Oy là N(0;2;0)
Hình chiếu của A(1 ;2 ;3) lên trục Ox là P(0;0;3)
Phương trình mặt phẳng (P) cần tìm là:
Chọn đáp án C
Phương trình mặt phẳng (P) theo đoạn chắn
Dễ thấy mặt phẳng (P) vuông góc với mặt phẳng Q 3 có phương trình 2 x + 2 y - z - 1 = 0 vì tích vô hướng của hai vectơ pháp tuyến bằng 0.
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.
Chọn A
Gọi A(a;0;0);B(0;b;0);C(0;0;c)
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên:
Khi đó phương trình (P): 3x+2y+z-14=0.
Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.
Đáp án C
Phương trình mặt phẳng đoạn chắn của (ABC) là
Do đó (ABC): 6x + 4y + 3z - 12 = 0
Chọn B
Gọi A(a;0;0), B(0;b;0), C(0;0;c). Ta có phương trình mặt phẳng (P) là:
Gọi H là hình chiếu của O lên (P). Ta có: d(O, (P)) = OH ≤ OM
Do đó max d(O, (P)) = OM khi và chỉ khi (P) qua M nhận làm VTPT.
Do đó (P) có phương trình:
Đáp án A
x − 1 + y 2 + z − 2 = 1
⇔ − 2 x + y − z − 2 = 0