So sánh A=\(\frac{11}{29}\)+\(\frac{9}{17}\)+\(\frac{10}{19}\)với 2
Làm giúp mk bài này nha!Cảm ơn mn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Trong 3 phân số thì \(\frac{9}{17}\)là phân số lớn nhất
\(\Rightarrow\frac{9}{17}+\frac{9}{17}+\frac{9}{17}>\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\)
\(\Rightarrow\frac{9}{17}\times3>A\)
Mà \(\frac{9}{17}\times3=\frac{27}{17}< \frac{34}{17}=2\)
\(\Rightarrow2>\frac{9}{17}\times3>A\)
\(\Rightarrow A< 2\)
\(\frac{4}{7}:\left(\frac{2}{5}.\frac{4}{7}\right)\)
\(=\frac{4}{7}:\frac{8}{35}\)
\(=\frac{4}{7}.\frac{35}{8}\)
\(=\frac{5}{2}\)
Ta có :
\(\frac{-16}{32}=\frac{-16:16}{32:16}=\frac{-1}{2}\)
+)\(\frac{-1}{2}=\frac{x}{-10}\)
=> (-10) x (-1) = X x 2
=> 10 = X x 2
=> X = 10 : 2
=> X = 5
+) \(\frac{-1}{2}=\frac{-7}{y}\)
=> (-1) x Y = (-7) x 2
=> -Y = -14
=> Y = 14
+)\(\frac{-1}{2}=\frac{z}{24}\)
=> (-1) x 24 = Z x 2
=> -24 = Z x 2
=> Z = -24 : 2
=> Z = -12
Kết luận : X = 5
Y = 14
Z = 12
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)
Bài giải
a) Ta có : \(\frac{4545+101}{6969-303}=\frac{45.101+101}{69.101-101.3}=\frac{101.\left(45+1\right)}{101.\left(69-3\right)}=\frac{101.46}{101.66}=\frac{23}{33}\)
b) Ta có : \(\frac{2929-101}{2.1919+404}=\frac{29.101-101}{2.19.101+4.101}=\frac{101.\left(29-1\right)}{101.\left(19.2+4\right)}=\frac{28}{42}=\frac{2}{3}\)
a)\(\frac{4545+101}{6969-303}\)= \(\frac{\left(4545:45\right)+101}{\left(6969:69\right)-303}\)= \(\frac{101+101}{101-303}\)=\(\frac{202}{-202}\)=-1
b)\(\frac{2929-101}{2.1919+404}\)= \(\frac{2929-101}{3838+404}\)=\(\frac{\left(2929:29\right)-101}{\left(3838:38\right)+404}\)=\(\frac{101-101}{101+404}\)=\(\frac{0}{505}\)=0
học tốt
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
Ta có thể thấy:
\(\frac{11}{29};\frac{9}{17};\frac{10}{19}< \frac{2}{3}\)
\(\Rightarrow\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< 3\times\frac{2}{3}=2\)
Chúc bn hok tốt