K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

21)

\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)

20 tháng 5 2015

Tính A

Số số hạng: (10 - 1,01) : 0,01 + 1 =  900 số

=> A = (1,01 + 10). 900 : 2 = 4954,5

Tính B:

\(\frac{1}{2}.B=\frac{1}{2}.2-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)

\(\frac{1}{2}.B=1-\frac{2+3}{2.3}+\frac{3+4}{3.4}-\frac{4+5}{4.5}+\frac{5+6}{5.6}-\frac{6+7}{6.7}+\frac{7+8}{7.8}-\frac{8+9}{8.9}+\frac{9+10}{9.10}\)

\(\frac{1}{2}.B=1-\frac{2+3}{2.3}+\frac{3+4}{3.4}-\frac{4+5}{4.5}+\frac{5+6}{5.6}-\frac{6+7}{6.7}+\frac{7+8}{7.8}-\frac{8+9}{8.9}+\frac{9+10}{9.10}\)

\(\frac{1}{2}.B=1-\left(\frac{1}{3}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{3}\right)-\left(\frac{1}{5}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{6}\right)+\left(\frac{1}{8}+\frac{1}{7}\right)-\left(\frac{1}{9}+\frac{1}{8}\right)+\left(\frac{1}{10}+\frac{1}{9}\right)\)\(\frac{1}{2}.B=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}+\frac{1}{9}\)

\(\frac{1}{2}.B=1-\frac{1}{2}+\frac{1}{10}=\frac{6}{10}\Rightarrow B=\frac{6}{5}\)

=> 2.A + \(\frac{455}{3}\).B = 2.4954,5 + \(\frac{455}{3}\)\(\frac{6}{5}\) = 9909 + 182 = 10091

31 tháng 1 2018

 A = 1,01 + 1,02 + 1,03 + ... + 9,98 + 9,99 + 10

Dãy trên các số hạng cách nhau 0,01 đơn vị

Số số hạng của dãy A là :

( 10 - 1,01 ) : 0,01 + 1 = 900 ( số )

Tổng các số hạng của dãy A là :

( 10 + 1,01 ) x 900 : 2 = 4954.5

đ/s......

11 tháng 2 2020

\(A=\frac{88}{25}-2\left(\frac{9}{20}-\frac{11}{30}+\frac{13}{42}-.....-\frac{199}{9900}\right)\)

\(A=\frac{88}{25}-2\left(\frac{4+5}{4.5}-\frac{5+6}{5.6}+....-\frac{99+100}{99.100}\right)\)

\(A=\frac{88}{25}-2\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+....-\frac{1}{99}-\frac{1}{100}\right)\)

\(A=\frac{88}{25}-2\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{88}{25}-\frac{1}{2}+\frac{1}{50}=\frac{176-25+1}{50}=\frac{152}{50}=\frac{76}{25}\)

10 tháng 8 2016

Sai đề òi,phải là \(\frac{38}{25}\) chứ

11 tháng 8 2016

ukm, 38/25 nhầm

 

5 tháng 9 2019

\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\cdot\cdot\cdot+\frac{197}{4851}-\frac{199}{4950}\)

\(\Rightarrow S=\frac{38}{25}+\frac{18}{20}-\frac{22}{30}+\cdot\cdot\cdot+\frac{394}{9702}-\frac{398}{9900}\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{20}-\frac{11}{30}+\cdot\cdot\cdot+\frac{197}{9702}-\frac{199}{9900}\right)\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{4\cdot5}-\frac{11}{5\cdot6}+\cdot\cdot\cdot+\frac{197}{98\cdot99}-\frac{199}{99\cdot100}\right)\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot-\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}-\frac{1}{100}\right)\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{25}{100}-\frac{1}{100}\right)\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{24}{100}\)

\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{6}{25}\)

\(\Rightarrow S=\frac{38}{25}+\frac{12}{25}\)

\(\Rightarrow S=\frac{50}{25}=2\)