K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

+) Với x =0 => y = -1 hoặc y =1 . Thay vào thỏa mãn

+) Với x khác 0

Có: \(x^4+x^3+x^2+x+1=y^2\)

<=> \(4x^4+4x^3+4x^2+4x+4=4y^2\)

=> \(4y^2=\left(4x^4+4x^3+x^2\right)+\left(3x^2+4x+4\right)>\left(4x^4+4x^3+x^2\right)=\left(2x+x\right)^2\)(1)

( vì \(3x^2+4x+4>0\))

và \(4y^2=\left(4x^4+x^2+4+4x^3+8x^2+4x\right)-5x^2< \left(4x^4+x^2+4+4x^3+8x^2+4x\right)\)

                                                                                                            \(=\left(2x+x+2\right)^2\)(2)

( vì x khác 0 => \(x^2>0\))

tỪ (1) VÀ (2) => \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

=> \(4y^2=\left(2x^2+x+1\right)^2\)

=> \(\left(2x^2+x\right)^2+3x^2+4x+4=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)

<=> \(x^2-2x-3=0\)

<=> x = -1 hoặc x = 3

Với x =-1 => y = -1 hoặc 1 . Thử lại thỏa mãn

Với x = 3 => y = 11 hoặc -11. Thử lại thỏa mãn.

Vậy: phương trình trên có nghiệm ( x; y ) là \(\left(0;\pm1\right);\left(-1;\pm1\right);\left(3;\pm11\right)\)

22 tháng 11 2023

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

25 tháng 2 2017

Ta có (1)  ⇔ x 4 + x 2 + 20 = y 2 + y

Ta thấy:  x 4 + x 2 < x 4 + x 2 + 20 ≤ x 4 + x 2 + 20 + 8 x 2 ⇔ x 2 ( x 2 + 1 ) < y ( y + 1 ) ≤ ( x 2 + 4 ) ( x 2 + 5 )

Vì x, y Z nên ta xét các trường hợp sau

+ TH1.  y ( y + 1 ) = ( x 2 + 1 ) ( x 2 + 2 ) ⇔ x 4 + x 2 + 20 = x 4 + 3 x 2 + 2 ⇔ 2 x 2 = 18 ⇔ x 2 = 9 ⇔ x = ± 3

Với  x 2 = 9   ⇒ y 2 + y = 9 2 + 9 + 20 ⇔ y 2 + y − 110 = 0 ⇔ y = 10 ; y = − 11 ( t . m )

+ TH2  y ( y + 1 ) = ( x 2 + 2 ) ( x 2 + 3 ) ⇔ x 4 + x 2 + 20 = x 4 + 5 x 2 + 6 ⇔ 4 x 2 = 14 ⇔ x 2 = 7 2   ( l o ạ i )

+ TH3: y ( y + 1 ) = ( x 2 + 3 ) ( x 2 + 4 ) ⇔ 6 x 2 = 8 ⇔ x 2 = 4 3   ( l o ạ i )

+ TH4:  y ( y + 1 ) = ( x 2 + 4 ) ( x 2 + 5 ) ⇔ 8 x 2 = 0 ⇔ x 2 = 0 ⇔ x = 0

Với  x 2 = 0  ta có  y 2 + y = 20 ⇔ y 2 + y − 20 = 0 ⇔ y = − 5 ; y = 4

Vậy PT đã cho có nghiệm nguyên (x;y) là :

(3;10), (3;-11), (-3; 10), (-3;-11), (0; -5), (0;4).

1 tháng 11 2018