Cho tam giác ABC cân tại A,có 2 cạnh góc vuông AB=12cm, AC=16cm.Vẽ trung tuyến AM.
A) Tính độ dài cạnh huyền BC.
B) Tính độ dài đường trung tuyến AM.
C) Tính khoảng cách từ A đến Giờ.
D) Tính khoảng cách từ G đến BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H
ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)
⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)
Gọi M là trung điểm của BC ⇒ AM là trung tuyến.
Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên
tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền
xét tam giác ABC có:
AB2+AC2 = BC2 ( đ/lý py-ta-go)
=> 32 + 42 = BC2
=> 9 + 16 = BC2
=> BC = 25
=> BC = \(\sqrt{25}=5cm\)
tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)
=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)
hình như mk làm sai hoặc bn sai đề
để ghi lại khúc cuối
AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)
có \(5:2=\frac{5}{2}\) nên mới có 5/2
a, Xét tam giác ABC cân tại A có AM là trung tuyến
=> AM đồng thời là đường cao => AM vuông BC
b, Ta có BM = BC/2 = 3/2 cm
Theo định lí Pytago tam giác AMB vuông tại M
\(AM=\sqrt{AB^2-BM^2}=\dfrac{\sqrt{91}}{2}cm\)
∆ABC vuông tại A => BC2 = AB2 + AC2
BC2 = 32 + 42
BC2 = 25
BC = 5
Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = BC
Vì G là trọng tâm của ∆ ABC nên AG = AM => AG =. BC
=> AG = BC = .5 = 1.7cm
a.Ta có: AM là đường trung tuyến trong tam giác cân ABC
=> Cũng là đường cao
=> AM vuông góc với BC
b.Có AM là đường trung tuyến \(\Rightarrow BM=BC:2=32:2=16cm\)
Áp dụng định lý pytago vào tam giác vuông ABM, có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=34^2-16^2\)
\(AM=\sqrt{900}=30cm\)