K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: BM=CM=3cm

=>AM=4cm

c: Xét ΔHBC có

HM vừa là đường cao, vừa là trung tuyến

=>ΔHBC cân tại H

17 tháng 5 2018

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)

⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)

Gọi M là trung điểm của BC ⇒ AM là trung tuyến.

Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền

xét tam giác ABC có:

AB2+AC2 = BC2 ( đ/lý py-ta-go)

=> 32 + 42 = BC2

=>   9  + 16  = BC2

=> BC = 25

=> BC = \(\sqrt{25}=5cm\)

tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)

=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)

hình như mk làm sai hoặc bn sai đề

để ghi lại khúc cuối

AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)

có \(5:2=\frac{5}{2}\) nên mới có 5/2

24 tháng 3 2022

a, Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao => AM vuông BC 

b, Ta có BM = BC/2 = 3/2 cm 

Theo định lí Pytago tam giác AMB vuông tại M

\(AM=\sqrt{AB^2-BM^2}=\dfrac{\sqrt{91}}{2}cm\)

19 tháng 4 2017

∆ABC vuông tại A => BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 25

BC = 5

Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = 12 BC

Vì G là trọng tâm của ∆ ABC nên AG =23 AM => AG =23.12 BC

=> AG = 13 BC = 13 .5 = 1.7cm

11 tháng 11 2021

a: BC=15cm

AM=7,5cm

20 tháng 4 2022

a.Ta có: AM là đường trung tuyến trong tam giác cân ABC 

=> Cũng là đường cao

=> AM vuông góc với BC

b.Có AM là đường trung tuyến \(\Rightarrow BM=BC:2=32:2=16cm\)

Áp dụng định lý pytago vào tam giác vuông ABM, có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=34^2-16^2\)

\(AM=\sqrt{900}=30cm\)

 

20 tháng 4 2022