Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ \(NP\perp AM\) tại P
\(\hept{\begin{cases}\text{có }AB=a\Rightarrow AM=\sqrt{AB^2+BN^2}=\frac{\sqrt{5}}{2}a\\\text{từ }CM:AM=AD=a\end{cases}}\Rightarrow MP=\frac{-2+\sqrt{5}}{2}a\)
Đặt ND = NP, ta có:
\(x^2+MP^2=MC^2+CN^2\)
\(x^2+\left(\frac{-2+\sqrt{5}}{2}\right)^2a^2=\frac{a^2}{4}+\left(a-x\right)^2\)
\(\Leftrightarrow x^2+\frac{9-4\sqrt{5}}{4}a^2=\frac{a^2}{4}+a^2-2ax+x^2\)
\(\Leftrightarrow a^2\left(\frac{9-4\sqrt{5}}{4}-\frac{1}{4}-1\right)=-2ax\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)a^2=-2ax\)
\(\Leftrightarrow x=\frac{\sqrt{5}-1}{2}a\Rightarrow CN=\frac{3-\sqrt{5}}{2}a\)
\(\Rightarrow MN=\sqrt{CN^2+MC^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{4}a^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{2}}a\)
P/s: Ko chắc
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a. Gọi G là trung điểm AD
Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
\(CD=BC-BD=40\left(cm\right)\)
Trong tam giác vuông BDI:
\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)
\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)
Trong tam giác vuông CDK:
\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)
\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)
b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)
\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADM:
\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)
\(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)
\(AI=AB-BI=50\left(cm\right)\)
Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)
Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)
Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)
Hai tam giác vuông AGF và AKD đồng dạng
\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)
\(\Rightarrow DF=AF=35\left(cm\right)\)
\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Áp dụng định lý Pitago cho tam giác vuông ABC
\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:
\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)
\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b.
Ta có: \(EC=AC-AE=3,6\left(cm\right)\)
Do AB song song CF, theo định lý Talet:
\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)
\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADF:
\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)
Pitago tam giác vuông BCF:
\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)
Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)
\(\Rightarrow FH=AD=6\left(cm\right)\)
\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)