Cho nửa đường tròn (O;R) đường kính BC. Gọi A là điểm di động trên nửa đường tròn. Kẻ AD vuông góc BC sao cho đường tròn đường kính AD cắt AB,AC và (O) tại E,F,G. Đường thẳng AG cắt BC tại H.
1) Tính \(\frac{AD^3}{BE.CF}\)theo R ? Chứng minh H,E,F thẳng hàng ?
2) Chứng minh: FG.CH + GH.CF = CG.HF ?
3) Trên BC lấy M cố định. Lấy N,P lần lượt là tâm ngoại tiếp các tam giác MAB,MAC. Xác định vị trí điểm A để SMNP Min ?
1) +) Xét đường tròn (AD): ^AED = ^AFD = 900 (Các góc nội tiếp chắn nửa đường tròn)
Áp dụng hệ thức lượng trong tam giác vuông: BD2 = BE.BA; CD2 = CF.CA => (BD.CD)2 = AB.AC.BE.CF
Hay AD4 = AD.BC.BE.CF => AD3 = BC.BE.CF => \(\frac{AD^3}{BE.CF}=BC=2R\)
+) Chứng minh H,E,F thẳng hàng ?
Ta có: AE.AB = AF.AC (=AD2) => Tứ giác BEFC nội tiếp => ^CBE = ^AFE = ^EGH (Do tứ giác AGEF nội tiếp)
=> Tứ giác BEGH nội tiếp => ^GEH = ^GBH = ^GAF. Mà ^GAF + ^GEF = 1800
Nên ^GEH + ^GEF = 1800 => 3 điểm H,E,F thẳng hàng (đpcm).
2) Ta thấy tứ giác BEGH và BEFC nội tiếp => AG.AH = AE.AB = AF.AC => Tứ giác GFCH nội tiếp
Theo ĐL Ptolemy cho tứ giác GFCH nội tiếp: FG.CH + GH.CF = CG.HF (đpcm).
3) Gọi S,T lần lượt là hình chiếu của N,P trên BC.
Xét đường tròn (P) có: ^ACM = 1/2.Sđ(AM = 900 - ^PMA => ^PMA = 900 - ^ACB.
Tương tự: ^NMA = 900 - ^ABC. Suy ra: ^PMA + ^NMA = 1800 - (^ABC + ^ACB) = 900 => ^PMN = 900
Từu đó dễ có: \(\Delta\)NSM ~ \(\Delta\)MTP (g.g) => NS.PT = MS.MT (*)
Xét \(\Delta\)MNP: ^PMN = 900 => \(S_{MNP}=\frac{MN.MP}{2}=\frac{\sqrt{\left(NS^2+MS^2\right)\left(PT^2+MT^2\right)}}{2}\)(ĐL Pytagore)
Áp dụng BĐT Bunhiacopsky: \(S_{MNP}\ge\frac{NS.PT+MS.MT}{2}=MS.MT=\frac{1}{4}BM.CM\)(Dựa vào (*) )
Vậy Min SMNP = 1/4.BM.CM = const (Vì M cố định). Đạt được khi A là trung điểm cung BC.