cho △ABC có góc A = 90o . Chứng minh :tan\(\dfrac{gócC}{2}\)=\(\dfrac{AB}{AB+AC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABH và ACH
=> 2 tam giác trên đồng dạng
=> \(\dfrac{AH}{HC}=\dfrac{AB}{AC}\)
\(mà\dfrac{AB}{AC}=\dfrac{5}{7}=>\dfrac{AH}{HC}=\dfrac{5}{7}=>HC=\dfrac{7.15}{5}=21\left(cm\right)\)
Áp dụng hệ thức lượng :
AH^2 = HB.HC => HB = \(\dfrac{15^2}{21}=\dfrac{75}{7}\left(cm\right)\)
*Đề bài viết thiếu đường cao AH :v
Xét tam giác AHB và tam giác CHA có:
góc AHB = góc CHA = 90o
góc BAH = góc C ( cùng phụ với góc B)
⇒\(\dfrac{AH}{HC}=\dfrac{AB}{AC}=\dfrac{HB}{AH}\)
Theo đề bài ta có : \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
⇒\(\dfrac{AB}{AC}=\dfrac{HB}{AH}\Leftrightarrow\dfrac{5}{7}=\dfrac{HB}{15}\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AH}{HC}\Leftrightarrow\dfrac{5}{7}=\dfrac{15}{HC}\Leftrightarrow HC=21\left(cm\right)\)
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
ta có: tan B=\(\dfrac{8}{15}\)
=>tan B=\(\dfrac{8}{15}=\dfrac{AC}{AB}\)
mà AB=30 cm (gt)
=> AC= 8.30:15=16 cm
xét tam giác ABC vuông tại A (gt)
=> AC2+AB2=BC2 ( Định lí pytago)
hay 162+302=BC2
=>BC=\(\sqrt{16^2+30^2}=34\)
ta có sin B=\(\dfrac{AC}{CB}=\dfrac{16}{34}=\dfrac{8}{17}\)
cos B= \(\dfrac{AB}{BC}=\dfrac{30}{34}=\dfrac{15}{17}\)
cotg B =\(\dfrac{30}{16}=\dfrac{15}{8}\)
Ta có : \(\dfrac{AB}{5}=\dfrac{AC}{12}\)
\(\Rightarrow\dfrac{AB^2}{25}=\dfrac{AC^2}{144}=\dfrac{AB^2+AC^2}{25+144}=\dfrac{BC^2}{169}=4\)
\(\Rightarrow\left\{{}\begin{matrix}AB=10\\AC=24\end{matrix}\right.\) ( cm )
- Áp dụng hệ thức lượng vào tam giác ABC vuông tại A đường cao AH .
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{120}{13}\left(cm\right)\)
- Áp dụng định lý pitago vào tam giác ABH vuông tại H :
\(BH=\sqrt{AB^2-AH^2}=\dfrac{50}{13}\left(cm\right)\)
- Áp dụng định lý pitago vào tam giác ACH vuông tại H :
\(CH=\sqrt{AC^2-AH^2}=\dfrac{288}{13}\left(cm\right)\)
Vậy ..
CMR : tan\(\dfrac{B}{2}=\dfrac{AC}{BC+AB}\) nhé mình ghi thiếu
Theo tính chất phân giác:
\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
\(\Rightarrow tan\dfrac{B}{2}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}\) (đpcm)
-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)
a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)
\(\Rightarrow\)△OAB∼△OCD (g-g).
b) \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).
c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)
-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)
\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)
Kẻ phân giác BK
Xét ΔABK vuông tại A có
\(\tan\widehat{ABK}=\dfrac{AK}{AB}\)
\(\Leftrightarrow\tan\dfrac{\widehat{ABC}}{2}=\dfrac{AK}{AB}\)(1)
Xét ΔABC có BK là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AK}{AB}=\dfrac{KC}{BC}\)(Tính chất đường phân giác)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AK}{AB}=\dfrac{KC}{BC}=\dfrac{AK+KC}{AB+BC}=\dfrac{AC}{AB+BC}\)(2)
Từ (1) và (2) suy ra \(\tan\dfrac{\widehat{ABC}}{2}=\dfrac{AC}{AB+BC}\)