K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

Ta có : \(\dfrac{AB}{5}=\dfrac{AC}{12}\)

\(\Rightarrow\dfrac{AB^2}{25}=\dfrac{AC^2}{144}=\dfrac{AB^2+AC^2}{25+144}=\dfrac{BC^2}{169}=4\)

\(\Rightarrow\left\{{}\begin{matrix}AB=10\\AC=24\end{matrix}\right.\) ( cm )

- Áp dụng hệ thức lượng vào tam giác ABC vuông tại A đường cao AH .

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{120}{13}\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ABH vuông tại H :

\(BH=\sqrt{AB^2-AH^2}=\dfrac{50}{13}\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ACH vuông tại H :

\(CH=\sqrt{AC^2-AH^2}=\dfrac{288}{13}\left(cm\right)\)

Vậy ..

27 tháng 6 2021

Thiếu đề

25 tháng 7 2020

- Áp dụng tỉ số lượng giác vào tam giác ABC đường cao AH có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\frac{AB}{AC}=\frac{3}{4}\)

=> \(AB=\frac{3AC}{4}\)

=> \(\frac{1}{92,16}=\frac{1}{\frac{9AC^2}{16}}+\frac{1}{AC^2}\)

=> \(\frac{1}{92,16}=\frac{16}{9AC^2}+\frac{1}{AC^2}\)

=> \(\frac{1}{92,16}=\frac{25}{9AC^2}\)

=> \(AC=16\)

=> \(AB=12\)

- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :

\(BC=\sqrt{AB^2+AC^2}=20\)

Vậy ...

AH
Akai Haruma
Giáo viên
27 tháng 7 2020

Hình vẽ:

AH
Akai Haruma
Giáo viên
27 tháng 7 2020

Lời giải:

Do $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ $(a>0)$.

Áp dụng công thức hệ thức lượng trong tam giác vuông: $\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$

$\Leftrightarrow \frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{9,6^2}$

$\Leftrightarrow \frac{25}{144a^2}=\frac{1}{9,6^2}$

$\Rightarrow a=4$

$\Rightarrow AB=12; AC=16$

Áp dụng định lý Pitago cho tam giác vuông:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$

a: Xét ΔBAE có IH//AE
nên IH/AE=BI/BA=1/2

=>IH=1/2AE

\(\dfrac{1}{4IH^2}=\dfrac{1}{\left(2IH\right)^2}=\dfrac{1}{AE^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

b: Đề sai rồi bạn

23 tháng 6 2017

a)

Kẻ DH _I_ AB và DK _I_ AC.

\(\widehat{DHA}=\widehat{HAK}=\widehat{AKD}=90^0\)

=> AKDH là hình chữ nhật có AD là đường phân giác

=> AKDH là hình vuông

=> AK = KD = DH = HA

Tam giác KAD vuông cân tại A có:

\(AD=\sqrt{2}AK\)

\(\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AK}\left(1\right)\)

~*~*~*~*~

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\dfrac{1}{2}DH\times AB+\dfrac{1}{2}KD\times AC=\dfrac{1}{2}AB\times AC\)

\(\Leftrightarrow AK\times\left(AB+AC\right)=AB\times AC\)

\(\Leftrightarrow\dfrac{AB+AC}{AB\times AC}=\dfrac{1}{AK}\)

\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AK}\left(2\right)\)

~*~*~*~*~

(1) và (2) => đpcm

23 tháng 6 2017

b)

Trên đoạn thẳng AB, lấy điểm E sao cho AD = AE.

AD là đường phân giác của tam giác ABC

\(\Rightarrow\widehat{DAB}=\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)

Tam giác ABC có AD là đường phân giác

=> \(\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}\) (tính chất của dãy tỉ số bằng nhau)

=> \(\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)

Tam giác ADE có: AD = AE, \(\widehat{DAE}=60^0\)

=> Tam giác ADE đều

=> \(\widehat{EDA}=\widehat{DAC}\left(=60^0\right)\) mà chúng nằm ở vị trí so le trong

=> ED // AC

\(\Rightarrow\dfrac{ED}{AC}=\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)

\(\Rightarrow\dfrac{1}{AD}=\dfrac{AB+AC}{AB\times AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\left(\text{đ}pcm\right)\left(ED=AD\right)\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{16}\)

hay HC=16HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow16HB^2=148\)

\(\Leftrightarrow HB=\dfrac{\sqrt{37}}{2}\)

\(\Leftrightarrow HC=8\sqrt{37}\)

\(\Leftrightarrow BC=\dfrac{17\sqrt{37}}{2}\left(cm\right)\)

22 tháng 8 2021

Cho em hỏi làm sao để có \(\dfrac{HB}{HC}\)=\(\dfrac{1}{16}\)

16 tháng 8 2016

A B C H

a) Xét hai tam giác vuông : tam giác HBA và tam giác ABC có : 

góc B chung , góc AHB = góc BAC = 90 độ

=> tam giác HBA đồng dạng với tam giác ABC (g.g)

=> \(\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)

b) Xét hai tam giác vuông : tam giác HBA và tam giác HAC có :

góc AHB = góc AHC = 90 độ , góc ABH = góc HAC vì cùng phụ với góc BCA

=> tam giác HBA đồng dạng với tam giác HAC

=> \(\frac{BH}{AH}=\frac{AH}{CH}\Rightarrow AH^2=BH.CH\)

c) Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}BC.AH\Rightarrow AB.AC=BC.AH\)

\(\Rightarrow\left(AB.AC\right)^2=\left(BC.AH\right)^2\Leftrightarrow\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\)

\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)