K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

WLOG \(a\ge b\)

\(\left\{{}\begin{matrix}a^b=b^c\\a\ge b\end{matrix}\right.\Rightarrow b\le c\)

\(\left\{{}\begin{matrix}b^c=c^a\\b\le c\end{matrix}\right.\Rightarrow c\ge a\)

\(\left\{{}\begin{matrix}c^a=a^b\\c\ge a\end{matrix}\right.\Rightarrow a\le b\)

Mâu thuẫn với điều vừa giả sử

Vậy \(\left\{{}\begin{matrix}a=b=c\\a+b+c=36\end{matrix}\right.\Rightarrow a=b=c=12\)

23 tháng 4 2018

Lightning Farron Không mâu thuẫn với điều giả sử nhé. Vì giả sử là \(a\ge b\) chứ không phải \(a>b\). Mà nếu như giả sử là \(a>b\) là không đúng thì vẫn chưa đủ để kết luận là \(a=b\). Phải chứng minh thêm \(a< b\) là không đúng nữa mới được kết luận \(a=b\) (chỗ này chỉ cần ghi là chứng minh tương tự thôi).

14 tháng 2 2017

bạn có biết ko?

11 tháng 11 2016

a,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d => n+1 chia hết cho d

b chia hết cho d=> n + 6 chia hết cho d

=> n + 6 - (n+1) chia hết cho d

=>5 chia hết cho d

Mà d lớn nhất

=> d = 5

Vậy UCLN của a, b = 5

b,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>2n+1 chia hết cho d

b chia hết cho d=> n + 4 chia hết cho d => 2(n+4) chia hết cho d=>2n+8 chia hết cho d

=>2n + 8 - (2n+1)chia hết cho d

=7 chia hết cho d

Mà d lớn nhất

=> d = 7

Vậy UCLN của a, b = 7

c,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>4n+3 chia hết cho d=>5(4n+3) chia hết cho d=>20n + 15 chia hết cho d

b chia hết cho d=>5n + 1 chia hết cho d=>4(5n+1) chia hết cho d=>20n+4 chia hết cho d

=>20 + 15 - (20n+4) chia hết cho d

=>11 chia hết cho d

Mà d lớn nhất

=> d = 11

Vậy UCLN của a, b = 11

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

28 tháng 6 2017

Giả sử a > b > c > d

Khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất  là cdba

\(\Rightarrow\)abcd + dcba = 11330

Suy ra ta có a + d = 10 và b + c = 12

Vậy a + b + c + d = 10 + 12 = 22

8 tháng 8 2023

\(129-10=119⋮b\)

\(61-10=51⋮b\)

=> b là ước chung của 119 và 51 => b=17

b/

Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị

Số dư trong phép chia này là

14-1=13

\(\Rightarrow a=14.5+13=83\)

9 tháng 8 2023

a) gọi số chia cần tìm là b ( b > 10)

Gọi qlà thương của phép chia 129 cho b

Vì 129 chia cho b dư 10 nên ta có:129 = b.q+ 10 ⇒ b.q1 =119 = 119.1 =17.7

Gọi qlà thương của phép chia 61 chia cho cho b

Do chia 61 cho b dư 10 nên ta có 61 = b.q+10⇒ b.q2 = 51 = 1.51 = 17.3

Vì b < 10 và q≠ qnên ta dược b = 17

Vậy số chia thỏa mãn bài toán là 17.