K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

5 tháng 11 2021
Giải. Áp dụng các công thức lượng giác.

Bài tập Tất cả

Bài tập Tất cả

ai tích mình mình tích lại cho

26 tháng 9 2017

\(S=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-cot^2a.cot^2b=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-\frac{cos^2a.cos^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a-sin^2b-cos^2a.cos^2b}{sin^2a.sin^2b}=\frac{cos^2a-cos^2a.cos^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a\left(1-cos^2b\right)-sin^2b}{sin^2a.sin^2b}=\frac{cos^2a.sin^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{sin^2b\left(cos^2a-1\right)}{sin^2a.sin^2b}=\frac{-sin^2a.sin^2b}{sin^2a.sin^2b}=-1.\)

20 tháng 7 2016

Trước tiên ta chứng minh bài toán phụ: công thức tính diện tích tam giác ABC có góc A nhọn \(S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\)

Giải: Kẻ đường cao BH thì \(BH=AB.\sin A\)do đó \(S_{\Delta ABC}=\frac{1}{2}AC.BH=\frac{1}{2}AC.AB.\sin A\)

Ta quay trở lại việc giải bài toán trên. (hình bạn tự vẽ nhé!)

Ta có \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BDF}-S_{CDE}\)suy ra \(\frac{S_{DEF}}{S_{ABC}}=1-\frac{S_{AEF}}{S_{ABC}}-\frac{S_{BDF}}{S_{ABC}}-\frac{S_{CDE}}{S_{ABC}}.\)

Áp dụng bài toán phụ ta có \(\frac{S_{AEF}}{S_{ABC}}=\frac{\frac{1}{2}AE.AF.\sin A}{\frac{1}{2}AB.AC.\sin A}=\frac{AE.AF}{AB.AC}=\frac{AF}{AC}.\frac{AE}{AB}\)

Trong các tam giác vuông ACF và ABE có: \(\cos A=\frac{AF}{AC}\)và \(\cos A=\frac{AE}{AB}\)

Do đó \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)tương tự \(\frac{S_{BDF}}{S_{ABC}}=\cos^2B\)và \(\frac{S_{CDE}}{S_{ABC}}=\cos^2C\)

Vậy \(\frac{S_{DEF}}{S_{ABC}}=\left(1-\cos^2A\right)-\cos^2B-\cos^2C=\sin^2A-\cos^2B-\cos^2C.\)

Hay \(S_{DEF}=\left(\sin^2A-\cos^2B-\cos^2C\right).S_{ABC}=\sin^2A-\cos^2B-\cos^2C\)(do \(S_{ABC}=1\)).