Chứng minh rằng
a)S=3+31+32+33+34+......+320
b)S=3+32+33+34+........+320
chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
\(A=1+3+3^2+3^3+...+3^{102}+3^{103}\)
\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{102}+3^{103}\right)\)
\(\Rightarrow A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)\)
\(\Rightarrow A=\left(1+3\right)\left(1+3^2+...+3^{102}\right)\)
\(\Rightarrow A=4\left(1+3^2+...+3^{102}\right)⋮4\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
Phần a sai đề nha
b) S = 3 + 32 + 33 + 34 + ............ + 320
S = ( 3 + 32 ) + ( 33 + 34 ) + ........... + ( 319 + 320 )
S = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ....... + 319 . ( 1 + 3 )
S = 3 . 4 + 33 . 4 + ............. + 319 . 4
S = 12 + 27 . 4 + ........... + 319 . 4
S = 12 + 108 + ........... + 319 . 4
Mà 12 ; 108 \(⋮\) 12 \(\Rightarrow\) ( 12 + 108 + ............ + 319 . 4 ) \(⋮\) 12
Vậy S \(⋮\) 12 ( ĐPCM )
b/S=3+3^2+3^3+3^4+......+3^20(gồm 21 số hạng)
S=(3+3^2)+(3^3+3^4)+(3^5+3^6)+......+(3^19+3^20)
S=1(3+3^2)+3^2(3+3^2)+......+3^18(3+3^2)
S=1.12 +3^2.12 +........+3^18.12
S=12.(1+3^2+3^4+......+3^18)
Vậy S chia hết cho 12