K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

GTLN của C là 3

14 tháng 12 2019

ĐKXĐ: x2 +2x+1 ≠ 0 ⇒ x ≠ -1

\(\frac{3+4x}{x^2+2x+1}\) có GTLN khi và chỉ khi x2+2x+1 nhỏ nhất

x2+2x+1

= (x+1)2

ta có:

(x+1)2 ≥ 0

⇔ x2+ 2x +1 nhỏ nhất khi x nhỏ nhất và x ≠ -1

⇒ x= 0

⇔ (x+1)2 =1

⇔ GTLN= 3+ 4x

NV
23 tháng 6 2019

\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được

24 tháng 6 2019

ở 12 là dấu cộng bạn ạ

24 tháng 6 2019

1, B=\(\frac{3}{4x^2-4x+5}\)

=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)

=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)

Để B=3 thì : (2x-2)2=0

\(\Leftrightarrow2x-2=0\)

\(\Leftrightarrow x=1\)

Vậy Max B =3 \(\Leftrightarrow x=1\)

24 tháng 6 2019

phần b nữa nha

NV
21 tháng 2 2020

\(M=\frac{12x+3}{3\left(x^2+3\right)}=\frac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\frac{4}{3}-\frac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\frac{4}{3}\)

\(\Rightarrow M_{max}=\frac{4}{3}\) khi \(x=\frac{3}{2}\)

\(M=\frac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\frac{\left(x+2\right)^2}{x^2+3}\ge-1\)

\(M_{min}=-1\) khi \(x=-2\)

NV
5 tháng 10 2019

\(B=\frac{4x+2}{2\left(x^2+2\right)}=\frac{-\left(x^2+2\right)}{2\left(x^2+2\right)}+\frac{x^2+4x+4}{x^2+2}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{x^2+2}\ge-\frac{1}{2}\)

\(B=\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)

\(C=\frac{-\left(x^2+1\right)}{x^2+1}+\frac{x^2+4x+4}{x^2+1}=-1+\frac{\left(x+2\right)^2}{x^2+1}\ge-1\)

\(C=\frac{4x^2+4}{x^2+1}-\frac{4x^2-4x+1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\)

25 tháng 5 2019

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1