Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
M=(8x+3)/(4x^2+1)
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1)
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1
=> min M = -1 khi x = -1
mặt khác:
M = -1 + (2x +2)^2/(4x^2 +1)
M = 4 - 5 + (2x +2)^2/(4x^2 +1)
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1)
M = 4 - (16x^2 - 8x +1)/(4x^2 +1)
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4
=> max M = 4 khi x = 1/4
GTNN
M=\(\frac{x^2-4x+4-x^2-3}{x^2+3}=\frac{\left(x-2\right)^2-\left(x^2+3\right)}{x^2+3}=\frac{\left(x-2\right)^2}{x^2+3}-1\)-1
do\(\frac{\left(x-2\right)^2}{x^2+3}\ge0\)=>GTNN của M=-1
Dấu ''='' xảy ra khi và chỉ khi (x-2)2=0\(\Leftrightarrow x=2\)
VẬY GTNN CỦA M=-1 TẠI X=2
còn GTLN mình nghĩ là ko có. mình ko biết
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
\(B=\frac{4x+2}{2\left(x^2+2\right)}=\frac{-\left(x^2+2\right)}{2\left(x^2+2\right)}+\frac{x^2+4x+4}{x^2+2}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{x^2+2}\ge-\frac{1}{2}\)
\(B=\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)
\(C=\frac{-\left(x^2+1\right)}{x^2+1}+\frac{x^2+4x+4}{x^2+1}=-1+\frac{\left(x+2\right)^2}{x^2+1}\ge-1\)
\(C=\frac{4x^2+4}{x^2+1}-\frac{4x^2-4x+1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\)
\(M=\dfrac{4x+1}{x^2+3}\)
\(M+1=\dfrac{4x+1}{x^2+3}+\dfrac{x^2+3}{x^2+3}\)
\(M+1=\dfrac{x^2+4x+4}{x^2+3}=\dfrac{\left(x+2\right)^2}{x^2+3}\ge0\)
\(\Rightarrow M\ge-1\Leftrightarrow x=-2\)
Vậy MINM=-1<=>x=-2
C2:\(M=\dfrac{4x+1}{x^2+3}\)
\(\Leftrightarrow Mx^2+3M=4x+1\)
\(\Leftrightarrow Mx^2-4x+3M-1=0\left(1\right)\)
+)Xét M=0=>\(x=\dfrac{-1}{4}\)
+Xét \(M\ne0\)
=>Để pt(1) có nghiệm thì \(\Delta'=\left(-2\right)^2-M\left(3M-1\right)\ge0\)
\(\Leftrightarrow4-3M^2+M\ge0\)
\(\Leftrightarrow-1\le M\le\dfrac{4}{3}\)
\(\Rightarrow MINM=-1\Leftrightarrow x=-2\)
\(MAXM=\dfrac{4}{3}\Leftrightarrow x=\dfrac{3}{2}\)
\(M=\frac{12x+3}{3\left(x^2+3\right)}=\frac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\frac{4}{3}-\frac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\frac{4}{3}\)
\(\Rightarrow M_{max}=\frac{4}{3}\) khi \(x=\frac{3}{2}\)
\(M=\frac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\frac{\left(x+2\right)^2}{x^2+3}\ge-1\)
\(M_{min}=-1\) khi \(x=-2\)