K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)

vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)

7 tháng 5 2021

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

28 tháng 12 2021

nhanh nhanh nhanh nhanh nhanh nhanh nhanh nhanh

 

 

28 tháng 12 2021

\(A=1+2+2^2+...+2^{2020}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A-A=2+2^2+2^3+...+2^{2021}-1-2-2^2-...-2^{2020}\)

\(\Rightarrow A=2^{2021}-1\)

\(\Rightarrow A=2^{2021}-1=B\)

14 tháng 5 2018

\(B=\frac{2^{2020}+2}{2^{2021}+2}\)

\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)

\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)

Vậy  \(A=B\)

P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo

\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)

Vậy   \(A>B\)

11 tháng 5 2023

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)

\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)

\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)

Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)

 

22 tháng 12 2021

A = 1 + 2 + 22 + ... + 22021
2A = 2 + 4 + 23 + ... 22022
A = 22022 - 1

23 tháng 12 2021

\(A=1+2+2^2+...+2^{2020}+2^{2021}\)

\(2A=2+2^2+2^3+...+2^{2021}+2^{2022}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+...+2^{2020}+2^{2021}\right)\)

\(A=2^{2022}-1\)

18 tháng 4 2022

A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60

Ta có: �=12+122+123+124+...+122021+122022

⇒2�=1+12+122+123+...+122020+122021

⇒2�-�=(1+12+122+123+...+122020+122021)-(12+122+123+124+...+122021+122022)

⇒�=1-122022<1

⇒�<1   (1)

Lại có: �=13+14+15+1760

⇒�=1615

⇒�=1+115>1

⇒�>1    (2)

Từ (1) và (2)⇒�<�

Vậy 

23 tháng 12 2021

\(A=1+2+2^2+...+2^{2020}+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2021}+2^{2022}\\ \Rightarrow2A-A=A=2^{2022}-1\)

Vậy \(A\) và \(B\) là 2 số tự nhiên liên tiếp.

23 tháng 12 2021

batngo siêu vậy

 

16 tháng 4 2022

kp[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 tháng 12 2023

a) Đặt A =  2.11 + 2.13 + ... + 2.29

= 2.(11 + 13 + 15 + ... + 29)

Đặt B = 11 + 13 + 15 + ... + 29

Số số hạng của B:

(29 - 11) : 2 + 1 = 10 (số)

A = 2.(29 + 11) . 10 : 2

= 40.10

= 400

b) (2²⁰²² + 2²⁰²¹- 2²⁰²⁰) : (2²⁰¹⁹ . 2)

= 2²⁰²⁰.(2² + 2 - 1) : 2²⁰²⁰

= 4 + 2 - 1

= 5