Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)
vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)
\(B=\frac{2^{2020}+2}{2^{2021}+2}\)
\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)
\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A=B\)
P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo
\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A>B\)
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
A= 1 + 2 + 22 + 23+......+22022
2A = 2 + 22+23+24+.....+22023
2A - A = 22023-1 = 22021.22-1 = 22021.4-1
- > A < 5.22021
sai hay đúng ko bt nha ( mik lm bừa )
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
Câu 1.
C = 5 + 42 + 43 + ... + 42020
a) Xét A = 42 + 43 + ... + 42020
=> 4A = 43 + 44 + ... + 42021
=> 4A - A = 3A
= 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )
= 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020
= 42021 - 42
=> A = \(\frac{4^{2021}-4^2}{3}\)
Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)
b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)
Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)
=> C < D/3
c) Dùng kết quả ý a) ta được :
3C + 1 = 42x-6
<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)
<=> 42021 - 1 + 1 = 42x-6
<=> 42021 = 42x-6
<=> 2021 = 2x - 6
<=> 2x = 2027
<=> x = 2027/2
Câu 2.
( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221
Xét A = 22 + 23 + ... + 220
=> 2A = 23 + 24 + ... + 221
=> A = 2A - A
= 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )
= 23 + 24 + ... + 221 - 22 - 23 - ... - 220
= 221 - 4
Thế vô đề bài ta được
( x - 1 )( 4 + 221 - 4 ) = 222 - 221
<=> ( x - 1 ).221 = 221( 2 - 1 )
<=> x - 1 = 1
<=> x = 2
\(A=2019\times2021=\left(2021-1\right)\times\left(2021+1\right)=2021^2-1< 2021^2=B.\)
Ta cóA=1+2+22+...+22019
2A=2+22+23+...+22020
=>2A-A=(2+22+23+...+22020)-(1+2+22+...+22019)
=>A=22020-1
Mà B=22020-1
=>A=B
Vậy A=B
Ta có: \(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2+2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=2^{2020}-1\)
Hay \(A=2^{2020}-1\)
Vì \(B=2^{2020}-1\);\(A=2^{2020}-1\)
\(\Rightarrow A=B\)
Hok tốt nha^^
2A=2*(1+2+22+...+22020)=2+22+...+22021
2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)
A=22021-1<2021
Giải:
A=1+2+22+23+...+22020
2A=2+22+23+24+...+22021
2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)
A=22021-1
⇒A<22021
Chúc bạn học tốt!