Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)
vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
Đặt A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)
=> \(2019A=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2018}{2019^{2020}+1}\)
Đặt B = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)
=> \(2019B=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2018}{2019^{2021}+1}\)
Vì \(\frac{2018}{2019^{2020}+1}>\frac{2018}{2019^{2021}+1}\Rightarrow1+\frac{2018}{2019^{2020}+1}>1+\frac{2018}{2019^{2021}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Ta cóA=1+2+22+...+22019
2A=2+22+23+...+22020
=>2A-A=(2+22+23+...+22020)-(1+2+22+...+22019)
=>A=22020-1
Mà B=22020-1
=>A=B
Vậy A=B
Ta có: \(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2+2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=2^{2020}-1\)
Hay \(A=2^{2020}-1\)
Vì \(B=2^{2020}-1\);\(A=2^{2020}-1\)
\(\Rightarrow A=B\)
Hok tốt nha^^
\(B=\frac{2^{2020}+2}{2^{2021}+2}\)
\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)
\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A=B\)
P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo
\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A>B\)