K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

29 tháng 3 2020

2019^2020 tận cùng là 1, 2021^2019 tận cùng là 1 => 2019^2020 + 2021^2019 + 2022 tận cùng là 4 suy ra số dư là 4

24 tháng 3 2019

mk chỉ cần phần c thui nha!!!!!!!

24 tháng 3 2019

c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)

Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)

\(\Rightarrow M>N\) 

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+......+5^{2020}\)

\(\Rightarrow5A=5^1+5^2+5^3+5^4+.......+5^{2021}\)

\(\Rightarrow5A-A=5^{2021}-5^0\)

\(\Rightarrow4A=5^{2021}-1\)

Vì \(5^{2021}-1\)và \(5^{2020}\)là 2 số tự nhiên liên tiếp

\(\Rightarrow\)\(4A\)và \(B\)là 2 số tự nhiên liên tiếp ( đpcm )

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+...+5^{2020}\)

\(5A=5.\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(=5^1+5^2+5^3+5^4+...+5^{2021}\)

\(5A-A=\left(5^1+5^2+5^3+5^4+...+5^{2021}\right)-\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(4A=5^{2021}-5^0\)

\(=5^{2021}-1\)

mà \(B=5^{2021}\)

\(\Rightarrow\)4A và B là 2 số tự nhiên liên tiếp

5 tháng 7 2021

A)Nhìn 2 số cuối biết chia hết cho 2 rồi

thì chia hết cho 2

B)KHÔNG chia hết cho 2

Vì 13 = 1        03 = 0           1 với 0 thì không chia hết cho 2

NM
17 tháng 1 2022

ta có 

\(C=2020\times\left(2021^9+2021^8+...+2021^2+2021^1+1\right)+1\)

\(2020\times\frac{2021^{10}-1}{2021-1}+1=2021^{10}-1+1=2021^{10}\)

7 tháng 1 2016

đặt biểu thức ban đầu là A, 42020+42019+...+4+1=B

4B=42021 +42020 +42019+...+42+4

3B=4B-B=42021-1  => B= (42021-1)/3

A=75B+25=75(42021-1)/3 + 25= 25(42021-1)+25=25(42021-1+1)=25.42021=100.42020

=> A chia hết cho cả 100 và 42021

mặt khác A=25.42021=42021.(24+1)=24.42021+42021=6.42022+42021 

vì 42021<42022 nên A chia 42022 dư 42021

tick cho mk nha!!!!!!!!

 

 

DD
16 tháng 1 2021

a) \(x\left(x+2021\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).

b) \(\left(x-2020\right)\left(x+2021\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).

c) \(\left(x-2021\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).

d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

Xét tổng: \(A=1+3+5+...+99\)

Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).

Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).

\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

\(\Leftrightarrow50x+2500=0\)

\(\Leftrightarrow x=-50\).