K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

Bạn Đúc giúp người kiểu giì đấy :))) , giúp mà không giúp hết à ???

a) 2x + 2020  2021

=> 2x = 2021 - 2020

=> 2x = 1

=> 2x = 20

=> x = 0

b) Ta có :

4x + 14 ⋮ x + 2

=> 4. ( x + 2 ) + 6 ⋮ x + 2

Mà 4 . ( x + 2 ) ⋮ x + 2 

=> 6 ⋮ x + 2 => x + 2 ∈ { 1 ; 2 ; 3 ;6 }

=> x ∈ { 0 ; 1 ; 4 } ( do x ∈ N )

c) ( x - 3 )2021 - ( x - 3 )5 = 0

=> ( x - 3 )5 . [ ( 2 - 3 )2016 - 1 ] = 0

\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^5=0\\\left(x-3\right)^{2016}-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{2016}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x-3\in=\left\{-1;1\right\}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x\in=\left\{2;4\right\}\end{cases}}\)

a) 2x = 2021 - 2020

    2x = 1

\(\Rightarrow\)2x = 10

\(\Rightarrow\)x = 0

5 tháng 2 2016

Câu 1:

a) Tìm số nguyên tố abcd sao cho ab ,cd là các số nguyên tố và b2=cd + b - c

b) Tìm các số tự nhiên có 2 chữ số mà số đó chia hết cho tích của chúng

c) Tìm số nguyên tố p và q sao cho 7p+q và pq+11 đều là các số nguyên tố

Câu 2:So sánh 2 số sau:

a)31111 và 17139

b)2011 . 23 mũ 2 mũ 3(xl nha,mình k viết dk lũy thừa tầng) và 2010.32 mũ 3 mũ 2

NM
17 tháng 1 2022

ta có 

\(C=2020\times\left(2021^9+2021^8+...+2021^2+2021^1+1\right)+1\)

\(2020\times\frac{2021^{10}-1}{2021-1}+1=2021^{10}-1+1=2021^{10}\)

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm