Tìm số tự nhiên có 2 chữ số ab khi biết 2b3 = \(\frac{3}{4}.\overline{3ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://olm.vn/hoi-dap/question/476913.html
coi link trên nha
Từ đề bài, ta có: (100a+10b+c)-(100c+10b+a)= 495 và a.c=b^2.
=> 99(a-c)=495. => a-c=5 và a.c=b^2.
-Nếu a=5: => c=0=> a.c=0=b^2.
=> b=0.
-Nếu a=6: => c=1=> b^2=1.6=6.(Loại do 6 không phải là số chính phương).
-Tương tự với a=7;c=2 và a=8;c=3.(Loại).
-Nếu a=9=> c=4 =>b^2= a.c=9.4=36 =6^2.
=> b=6( Do b thuộc N).
Vậy số có 3 chữ số cần tìm là 500 và 964.
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
gọi số đó là abcde.
ta có: 6abcde=9 x abcde
=> 600000+ abcde = 9 x abcde
=> 600000 = 9 x abcde - abcde
=> 600000 = abcde x (9-1)
=> 600000 = abcde x 8
=> abcde = 600000:8
=> abcde = 75000
vậy số đó là 75000
Chữ số hàng chục là chữ số lớn nhất chỉ chia hết cho \(1\)và chính nó nên chữ số hàng chục là chữ số \(7\).
Gọi số cần tìm là: \(\overline{a7b}\).
Ta có: \(\overline{b7a}-\overline{a7b}=693\)
\(\Leftrightarrow99\left(b-a\right)=693\)
\(\Leftrightarrow b-a=7\).
Suy ra \(a=1,b=8\)hoặc \(a=2,b=9\).
Vậy có hai số thỏa mãn yêu cầu bài toán là: \(178,279\).