Cho tam giác nhọn ABC nội tiếp đường tròn ( O;R). Các đường cao AD, BE và CF cắt nhau tại H.
a. Chứng minh các tứ giác BFHD, BFEC nội tiếp.
b. Chứng minh BD.BC = BH.BE.
c. Kẻ AD cắt cung BC tại M. Chứng minh D là trung điểm của MH.
c. Tính độ dài đường tròn ngoại tiếp tam giác BHC theo R.
Mình làm câu cuối nhá bài này dễ ợt ý mà
Gọi góc BAC = ♪ ( cho sinh độg) =))
Thì góc BHC = 180 – ♪
Vì D là trung điểm MH => ∆ CMH cân
=> ∆ CMB = ∆ CHB (c.c.c)
=> Góc CMB bằng góc CHB = 180 – ♪
Mà A,H,D thẳng hàng và H Đối xứng với M qua trục BC
Đến đây đủ để kết luận là
Đường tròn ở sẽ đối xứng với đường tròn ngoại tiếp ∆ BHC
Nên (O) =(I)
= 2πR
Với I là tâm