K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)

\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)

Theo đề bài ta có :

\(\begin{array}{l}N(x) - M(x) =  - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) =  - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) =  - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\) 

26 tháng 11 2021

\(x^2=1\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(x^2=3\Rightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)

\(x^2=5\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\end{matrix}\right.\Rightarrow x=-\sqrt{5}\left(vì.x< 0\right)\)

\(x^2=7\Rightarrow\left[{}\begin{matrix}x=-\sqrt{7}\\x=\sqrt{7}\end{matrix}\right.\Rightarrow x=-\sqrt{7}\left(vì.x< 0\right)\)

\(x^2=9\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

\(\left(x-2\right)^2=2\Rightarrow\left[{}\begin{matrix}x-2=-\sqrt{2}\\x-2=\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{2}\\x=2+\sqrt{2}\end{matrix}\right.\)

\(\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x-2=-2\\x-2=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\left(x-6\right)^2=6\Rightarrow\left[{}\begin{matrix}x-6=-\sqrt{6}\\x-6=\sqrt{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6-\sqrt{6}\\x=6+\sqrt{6}\end{matrix}\right.\)

\(\left(x-8\right)^2=8\Rightarrow\left[{}\begin{matrix}x-8=-2\sqrt{2}\\x-8=2\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8-2\sqrt{2}\\x=2+2\sqrt{2}\end{matrix}\right.\)

\(\left(x-10\right)^2=10\Rightarrow\left[{}\begin{matrix}x-10=-\sqrt{10}\\x-10=\sqrt{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-\sqrt{10}\\x=10+\sqrt{10}\end{matrix}\right.\)

\(\left(x-\sqrt{3}\right)^2=3\Rightarrow\left[{}\begin{matrix}x-\sqrt{3}=-\sqrt{3}\\x-\sqrt{3}=\sqrt{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{3}\end{matrix}\right.\)

\(\left(x-\sqrt{5}\right)^2=5\Rightarrow\left[{}\begin{matrix}x-\sqrt{5}=-\sqrt{5}\\x-\sqrt{5}=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{5}\end{matrix}\right.\)

1: Trường hợp 1: x<-2

Pt sẽ là -x-2+5-x=7

=>-2x+3=7

=>-2x=4

hay x=-2(loại)

Trường hợp 2: -2<=x<5

Pt sẽlà x+2+5-x=7

=>7=7(luôn đúng)

Trường hợp 3: x>=5

Pt sẽ là x+2+x-5=7

=>2x-3=7

=>x=5(nhận)

4: \(\left|x^2-2x\right|=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x^2-2x\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-2x-x\right)\left(x^2-2x+x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-3x\right)\left(x^2-x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;3\right\}\)

5: Ta có: \(\left|2x+3\right|=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(2x+3+x+2\right)\left(2x+3-x-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+5\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};-1\right\}\)

6: |5x-4|=|x+2|

=>5x-4=x+2 hoặc 5x-4=-x-2

=>4x=6 hoặc 6x=2

=>x=3/2 hoặc x=1/3

 

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

17 tháng 9 2023

a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);        

b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);

c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) =  - 3{x^2}.6{x^2} -  - 3{x^2}.8x +  - 3{x^2}.1\\ =  - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} =  - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);               

d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);

e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ =  - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} =  - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);  

g) 

 \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)

a, (ko vt lại đề) 

=> -5x- 1-1/2x -1/3=3/2x -5/6

=> -5x - 1/2x +3/2x = 1+1/3 - 5/6

=>( -5 -1/2 + 3/2 )x =1/2

=>                       -4x = 1/2

=>                         x = -1/8

Nguyễn Trà My

Phần a)

\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(32-3x+13=76-x\)

\(116-3x=76-x\)

\(116-76=3x-x\)

\(46=2x\)

\(x=46\div2\)

\(x=13\)

22 tháng 9 2017

a)  \(3.\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(3.\left(\frac{1}{2}-x\right)+x=\frac{7}{6}-\frac{1}{3}\)

\(\Rightarrow\frac{3}{2}-3x+x=\frac{5}{6}\)

\(-3x+x=\frac{5}{6}-\frac{3}{2}\)

\(2x=-\frac{2}{3}\)

\(x=-\frac{2}{3}:2\)

\(x=-\frac{1}{3}\)