K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2022

Do P thuộc Ox nên tọa độ có dạng \(P\left(p;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MN}=\left(1;-3\right)\\\overrightarrow{MP}=\left(p-2;-1\right)\end{matrix}\right.\)

Do tam giác MNP vuông tại M \(\Rightarrow\overrightarrow{MN}.\overrightarrow{MP}=0\)

\(\Rightarrow1.\left(p-2\right)+3=0\) \(\Rightarrow p=-1\)

\(\Rightarrow P\left(-1;0\right)\)

\(\Rightarrow\overrightarrow{MP}=\left(-3;-1\right)\Rightarrow\left\{{}\begin{matrix}MN=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\\MP=\sqrt{\left(-3\right)^2+\left(-1\right)^2}=\sqrt{10}\end{matrix}\right.\) 

\(\Rightarrow S_{MNP}=\dfrac{1}{2}MN.MP=5\)

NV
26 tháng 12 2022

Do C thuộc trục tung nên tọa độ có dạng \(C\left(0;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-1\right)\\\overrightarrow{AC}=\left(-1;c-2\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại A \(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Rightarrow4-\left(c-2\right)=0\Rightarrow c=6\)

\(\Rightarrow C\left(0;6\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(-1;4\right)\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-4\right)^2+\left(-1\right)^2}=\sqrt{17}\\AC=\sqrt{\left(-1\right)^2+4^2}=\sqrt{17}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{17}{2}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Do M, N, P là trung điểm của các cạnh BC, CA, AB nên:

\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = {x_M}\\\frac{{{x_B} + {x_A}}}{2} = {x_P}\\\frac{{{x_A} + {x_C}}}{2} = {x_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{x_B} + {x_A} = 2\\{x_A} + {x_C} = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{x_B} =  - 1\\{x_C} = 5\end{array} \right.\)  và  \(\left\{ \begin{array}{l}\frac{{{y_B} + {y_C}}}{2} = {y_M}\\\frac{{{y_B} + {y_A}}}{2} = {y_P}\\\frac{{{y_A} + {y_C}}}{2} = {y_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_B} + {y_C} = 0\\{y_B} + {y_A} = 4\\{y_A} + {y_C} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 5\\{y_B} =  - 1\\{y_C} = 1\end{array} \right.\)

Vậy \(A\left( {3;5} \right),B\left( { - 1; - 1} \right),C\left( {5;1} \right)\)

b) Trọng tâm tam giác ABC có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{3 + \left( { - 1} \right) + 5}}{3} = \frac{7}{3}\\\frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{5 + \left( { - 1} \right) + 1}}{3} = \frac{5}{3}\end{array} \right.\)

Trọng tâm tam giác MNP có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 4 + 1}}{3} = \frac{7}{3}\\\frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{0 + 2 + 3}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy trọng tâm của 2 tam giác ABC và MNP là trùng nhau vì có cùng tọa độ.

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

NV
26 tháng 12 2022

Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)

\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)

\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)

Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

NV
4 tháng 1

M thuộc Oy \(\Rightarrow M\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{BM}=\left(1;y-3\right)\end{matrix}\right.\)

ABM vuông tại B \(\Rightarrow\overrightarrow{AB}.\overrightarrow{BM}=0\)

\(\Rightarrow-2+y-3=0\Rightarrow y=5\)

\(\Rightarrow M\left(0;5\right)\)

29 tháng 3 2017

Đáp án A