Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Gọi (I1; R1) = Q(O; 45º) (I; R) (Phép quay đường tròn tâm I, bán kính R qua tâm O một góc 45º).
Vậy phương trình đường tròn cần tìm là (I2; R2): x2 + (y – 2)2 = 8.
Giả sử M 1 = D I ( M ) và M ′ = Q O ; − 90 ο ( M 1 ) . Ta có
Thế (x;y) theo (x′;y′) vào phương trình d ta có:
3(y′ − 2) − (4 − x′) – 3 = 0 ⇔ x′ + 3y′ − 13 = 0
Vậy phương trình d’ là x + 3y – 13 = 0.
Dễ thấy bán kính của (C') = 4. Tâm I của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O tỉ số k = -2 , I biến thành I 1 ( − 2 ; − 4 ) . Qua phép đối xứng qua trục Ox, I 1 biến thành I′(−2;4).
Từ đó suy ra phương trình của (C') là x + 2 2 + y − 4 2 = 16 .
a) Lấy hai điểm A(0;4) và B(2;0) thuộc d. Gọi A′, B′ theo thứ tự là ảnh của A và B qua phép vị tự tâm O tỉ số k = 3. Khi đó ta có
Vì O A → = ( 0 ; 4 ) nên O A ' → = ( 0 ; 12 ) . Do đó A′ = (0;12).
Tương tự B′ = (6;0); d1 chính là đường thẳng A'B' nên nó có phương trình:
b) Có thể giải tương tự như câu a) .
Sau đây ta sẽ giải bằng cách khác.
Vì d 2 / / d nên phương trình của d 2 có dạng 2x + y + C = 0.
Gọi A′ = (x′;y′) là ảnh của A qua phép vị tự đó thì ta có:
I A ' → = − 2 I A → hay x′ + 1 = −2, y′ − 2 = −4
Suy ra x′ = −3, y′ = −2
Do A' thuộc d 2 nên 2.(−3) – 2 + C = 0.
Từ đó suy ra C = 8
Phương trình của d 2 là 2x + y + 8 = 0
Gọi d 1 là ảnh của d qua phép vị tự tâm O tỉ số k = 0,5 thì phương trình của d 1 là x = 2 . Giả sử d' là ảnh của d qua phép quay tâm O góc 45 ο . Lấy M ( 2 ; 0 ) thuộc d 1 thì ảnh của nó qua phép quay tâm O góc 45 ο là M′(1;1) thuộc d'. Vì OM ⊥ d 1 nên OM′ ⊥ d′. Vậy d' là đường thẳng đi qua M' và vuông góc với OM'. Do đó nó có phương trình x + y – 2 = 0.