Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tại sao
Q=\(2\sqrt{\left(9-3m\right)^2}...\)
chuyển xuống thành \(\sqrt{\left(18-6m\right)^2...}\)
sao không phải là nhân 4 ở trong mài
vì \(2=\sqrt{4}\), vậy thì phải nhân 4 chứ
Do M thuộc Ox, gọi tọa độ M có dạng \(M\left(m;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;-4\right)\\\overrightarrow{MB}=\left(4-m;5\right)\\\overrightarrow{MC}=\left(-m;-9\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+2\overrightarrow{MB}=\left(9-3m;6\right)\\\overrightarrow{MB}+\overrightarrow{MC}=\left(4-2m;-4\right)\end{matrix}\right.\)
\(Q=2\sqrt{\left(9-3m\right)^2+6^2}+3\sqrt{\left(4-2m\right)^2+\left(-4\right)^2}\)
\(=\sqrt{\left(6m-18\right)^2+12^2}+\sqrt{\left(12-6m\right)^2+12^2}\)
\(=\sqrt{\left(18-6m\right)^2+12^2}+\sqrt{\left(6m-12\right)^2+12^2}\)
\(Q\ge\sqrt{\left(18-6m+6m-12\right)^2+\left(12+12\right)^2}=6\sqrt{17}\)
\(\Rightarrow a-b=-11\)
a.
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)
\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G
Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)
b.
Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min khi MG đạt min
\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox
Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)
c.
Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)
Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)
\(\Rightarrow M\left(-2;0\right)\)
Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-x;1\right)\\\overrightarrow{MB}=\left(1-x;3\right)\\\overrightarrow{MC}=\left(-2-x;2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}=\left(-2x+4;5\right)\)
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|=\sqrt{\left(-2x+4\right)^2+5}\ge\sqrt{5}\)
Dấu "=" xảy ra khi \(-2x+4=0\Leftrightarrow x=2\Rightarrow M\left(2;0\right)\)
Hok nhanh phết đấy =))
Có \(\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BA}\right|\Rightarrow\sqrt{\left(x_D-x_c\right)^2+\left(y_D-y_C\right)^2}=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)
\(\Leftrightarrow\sqrt{\left(x_D-0\right)^2+\left(y_D-4\right)^2}=\sqrt{\left(1-3\right)^2+\left(-2-2\right)^2}\)
\(\Leftrightarrow x_D^2+y_D^2-8y_D+16=20\)
\(\Leftrightarrow x_D^2+y^2_D-8y_D=4\) (1)
Có \(\left|\overrightarrow{DA}\right|=\left|\overrightarrow{CB}\right|\Rightarrow\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\)
\(\Leftrightarrow\left(1-x_D\right)^2+\left(-2-y_D\right)^2=\left(3-0\right)^2+\left(2-4\right)^2\)
\(\Leftrightarrow1-2x_D+x_D^2+4+4y_D+y_D^2=13\)
\(\Leftrightarrow x_D^2+y_D^2-2x_D+4y_D=8\)(2)
từ (1) và (2) suy ra hpt r giải ra là xong
3/ Xét VP trc
Ta có M là TĐ AB\(\Rightarrow\overrightarrow{AM}=\frac{\overrightarrow{AB}}{2}\)
\(\Rightarrow VP=\frac{2}{3}.\frac{1}{2}.\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\)
vì G là trọng tâm\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}\)
Theo quy tắc TĐ:\(\overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)
\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}.\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}=VP\)
câu 4 thầy mk chưa dạy nên chưa nghĩ ra cách lm, chắc để tối nghĩ :))
Gọi G là trọng tâm tam giác ABC
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất
\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung
\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)
Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)