Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Gọi H là hình chiếu của B trên mặt phẳng (P) khi đó ta có BH là khoảng cách từ điểm B đến mặt phẳng (P). Ta luôn có BH ≤ AB do đó khoảng cách từ B đến mặt phẳng (P) lớn nhất khi H ≡ A, khi đó là véc tơ pháp tuyến của mặt phẳng (P)
Vậy phương trình mặt phẳng (P) đi qua A (-1; 2; 4) và có véc tơ pháp tuyến là x - y + z - 1 = 0
Vậy khoảng cách từ điểm O đến mặt phẳng (P) là:
Chọn A
Vì đường thẳng Δ đi qua điểm A (0;0;1) và vuông góc với mặt phẳng Ozx thì Δ song song với trục Oy và nằm trong mặt phẳng Oyz. Dễ thấy OA là đường vuông góc chung của Δ và Ox
Xét mặt phẳng (α) đi qua I (0;0;1/2) và là mặt phẳng trung trực của OA.
Khi đó Δ // (α), Ox // (α) và mọi điểm nằm trên (α) có khoảng cách đến Δ và Ox là bằng nhau.
Vậy tập hợp điểm C là các điểm cách đều đường thẳng Δ và trục Ox là mặt phẳng (α). Mặt phẳng (α) đi qua I (0;0;1/2) có véc tơ pháp tuyến là nên có phương trình:
Đoạn BC nhỏ nhất khi C là hình chiếu vuông góc của B lên (α). Do đó khoảng cách nhỏ nhất giữa điểm B (0;4;0) tới điểm C chính là khoảng cách từ B (0;4;0) đến mặt phẳng (α):
Quỹ tích d là hình trụ dài vô tận có trục là Oz và bán kính \(R=3\)
Khoảng cách từ A đến d là lớn nhất khi d đi qua giao điểm của đường thẳng d' và trụ, trong đó d' qua A, cắt đồng thời vuông góc Oz
\(\Rightarrow\) A đúng
Đáp án C
Phương pháp giải: Khoảng cách từ điểm A ( x 0 ; y 0 ; z 0 ) đến trục Ox là d = y 0 2 + z 0 2
Lời giải:
Gọi H là hình chiếu của A trên Ox
Vậy khoảng cách từ A đến trục Ox là