K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Đáp án A

Từ giả thiết ta suy ra:

Từ đó suy ra phương trình của mặt phẳng (P) là: 1(x - 1) - 1(y - 0) = 0  x - y - 1 = 0

29 tháng 8 2017

Đáp án A

Từ giả thiết suy ra:

Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) - 1(y - 0) + 0(z - 1) = 0  x - y - 1 = 0

28 tháng 7 2017

Đáp án D

Từ giả thiết suy ra:

Mặt khác mặt phẳng (P) đi qua điểm B(2 ;1 ;3) nên ta có phương trình của mặt phẳng (P) là:

4(x - 2) + 5(y - 1) + 3(z - 3) = 0  4x + 5y + 3z - 22 = 0

NV
27 tháng 2 2021

a. (P) vuông góc denta nên nhận (1;2;3) là 1 vtpt

Phương trình (P):

\(1\left(x-2\right)+2\left(y-1\right)+3\left(z-3\right)=0\)

\(\Leftrightarrow x+2y+3z-13=0\)

b. \(\overrightarrow{AB}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{n_{\left(P\right)}}\right]=\left(3;-2;-1\right)\)

Phương trình mp:

\(3\left(x-1\right)-2\left(y+1\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x-2y-z-3=0\)

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)

NV
6 tháng 3 2023

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)

Phương trình (P):

\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)

6 tháng 3 2023

Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).

Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:

3x - 2y - z + d = 0, trong đó d là vế tự do.

Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):

3(1) -2(0) - (1) + d = 0

⇒ d = -2

Vậy phương trình của mặt phẳng (P) là:

3x - 2y - z - 2 = 0,

và đáp án là B.

20 tháng 6 2017

Đáp án B

Từ giả thiết ta suy ra:

Mặt khác mặt phẳng (P) đi qua điểm A(2;1;3) nên ta có phương trình của mặt phẳng (P) là: 1(x- 2) - 1(y - 1) = 0  x - y - 1 = 0

22 tháng 12 2019

Đáp án A

Từ giả thiết ta suy ra

Mặt khác (P) đi qua điểm A(1 ;0 ;1) nên ta có phương trình của mặt phẳng (P) là : 1(x - 1) - 1(y - 0) = 0 <=> x - y - 1 = 0.

Vậy đáp án đúng là A.

7 tháng 2 2018

Đáp án A

Gọi I(a,b,c) là tâm của mặt cầu (S). Ta có:

=> I(1; 1; 1); R = OI = 3

Vậy phương trình của mặt cầu (S) là:  ( x   -   1 ) 2   +   ( y   -   1 ) 2   +   ( z   -   1 ) 2  = 3

3 tháng 3 2018

Đáp Án D

Pt đường thẳng d có vecto chỉ phương  u ⇀ = n P ⇀ , n Q ⇀ = (1;0;-1)

Dt đi qua A   (1;-2;3)

Chọn đáp án D