Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{1}{2}x=3+2\)
\(\dfrac{1}{2}x=5\)
\(x=5\div\dfrac{1}{2}\)
\(x=10\)
\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)
\(\dfrac{1}{4}x^2-6=10\)
\(\dfrac{1}{4}x^2=10+6\)
\(\dfrac{1}{4}x^2=16\)
\(x^2=16\div\dfrac{1}{4}\)
\(x^2=64\)
\(x^2=\left(8\right)^2\)
\(\Rightarrow x=8\)
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
Câu 2:
\(A\left(x\right)=x^2+3x+1\)
\(B\left(x\right)=2x^2-2x-3\)
a) Tính A(x) là sao em?
b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)
\(=x^2+3x+1+2x^2-2x-3\)
\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)
\(=3x^2+x-2\)
Câu 1:
\(M\left(x\right)=x^3+3x-2x-x^3+2\)
\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)
\(=x+2\)
Bậc của M(x) là 1
Ta có: \(1+2^2+3^2+4^2+...+99^2+100^2\) (đề đúng)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right)\)
\(=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right)\)
\(=\frac{1.2.3+2.3.3+...+100.101.3}{3}-\frac{\left(100+1\right)\left[\left(100-1\right)\div1+1\right]}{2}\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101.\left(102-99\right)}{3}-5050\)
\(=\frac{1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-99.100.101+100.101.102}{3}-5050\)
\(=\frac{100.101.102}{3}-5050\)
\(=343400-5050\)
\(=338350\)
\(\frac{2}{3}\left(x-1\right)-x-\frac{3}{4}=1\)
<=> \(\frac{2}{3}x-\frac{2}{3}-x-\frac{3}{4}=1\)
<=> \(-\frac{1}{3}x-\frac{17}{12}=1\)
<=> \(-\frac{1}{3}x=\frac{29}{12}\)
<=> \(x=-\frac{29}{4}\)
\(\frac{5}{6}\left(x+2\right)-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(\frac{5}{6}x+\frac{5}{3}-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x+\frac{7}{6}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x=-\frac{5}{6}\)
<=> \(x=5\)
học tốt
a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x
=> ( x-2)2 +2023 \(\ge\) 2023
Vậy ...
Dấu bằng xảy ra khi x-2 = 0
b. (x-3)2+(y-2)2-2018
Ta có: \((x-3)^2 \ge0,\forall x\)
\((y-2) ^2 \ge0,\forall y\)
=> ( x-3)2 + ( y-2)2 \(\ge\) 0
=> ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y
Vậy ...
Dấu bằng xảy ra khi x-3=0
y-2=0
c. ( x+1)2 +100
Ta có : ( x+1)2 \(\ge0,\forall x\)
=> ( x+1)2+100 \(\ge\) 100
Vậy ...
Dấu bằng xảy ra khi x+1=0