Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)
\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)
\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)
\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)
\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)
\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)
\(\left(x-\frac{3}{5}\right)=\frac{2}{5}×-\frac{1}{3}\)
\(\left(x-\frac{3}{5}\right)=-\frac{2}{165}\)
\(x=-\frac{2}{165}+\frac{3}{5}\)
\(x=\frac{97}{165}\)
vậy \(x=\frac{97}{165}\)
\(x×\left(\frac{3}{7}+\frac{2}{3}\right)=\frac{10}{21}\)
\(x×\frac{23}{21}=\frac{10}{21}\)
\(x=\frac{10}{21}:\frac{23}{21}\)
\(x=\frac{10}{23}\)
vậy \(x=\frac{10}{23}\)
\(\left(x-\frac{3}{5}\right):\frac{-1}{3}=\frac{2}{5}\)
=> \(x-\frac{3}{5}=\frac{2}{5}\cdot\left(-\frac{1}{3}\right)=-\frac{2}{15}\)
=> \(x=-\frac{2}{15}+\frac{3}{5}=-\frac{2}{15}+\frac{9}{15}=\frac{7}{15}\)
\(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\)
=> \(\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\)
=> \(-\frac{5}{21}x=\frac{10}{21}\)
=> \(x=\frac{10}{21}:\frac{-5}{21}=\frac{10}{21}\cdot\frac{-21}{5}=-2\)
Hai bài của ☆luffy cute☆ đều sai hết , xem xét lại đi nhé
\(\frac{2}{3}\left(x-1\right)-x-\frac{3}{4}=1\)
<=> \(\frac{2}{3}x-\frac{2}{3}-x-\frac{3}{4}=1\)
<=> \(-\frac{1}{3}x-\frac{17}{12}=1\)
<=> \(-\frac{1}{3}x=\frac{29}{12}\)
<=> \(x=-\frac{29}{4}\)
\(\frac{5}{6}\left(x+2\right)-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(\frac{5}{6}x+\frac{5}{3}-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x+\frac{7}{6}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x=-\frac{5}{6}\)
<=> \(x=5\)
học tốt
Đặt : A = 1 + 2 + 2^2 + 2^3 + ... + 2^2016
=> 2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017
=> 2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2016 )
=> A = 2^2017 - 1
=> A < 2^2017
Vậy A < 2^2017
Ta đặt A = 1 + 2 + 22 + 23 + ....+ 22016
=> 2A = 2 + 22 + 23 + ...+22017
=> 2A - A = (2+22+23+...+22017) - (1+2+22+...+22016 )
=> A = 22017 - 1
Mà 22017 - 1 < 22017
=> A < 22017
Vậy 1 + 2 + 22 + ...+ 22016 < 22017
a) \(\dfrac{1}{4}-3\left(\dfrac{1}{12}+\dfrac{3}{8}\right)=\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{9}{8}=-\dfrac{9}{8}\)
b) \(\left(-\dfrac{2}{3}+\dfrac{3}{5}\right):\dfrac{1}{50}-30=\left(-\dfrac{2}{3}+\dfrac{3}{5}\right).50-30=-\dfrac{100}{3}+30-30=-\dfrac{100}{3}\)
\(a,\dfrac{1}{2}x=3+2\)
\(\dfrac{1}{2}x=5\)
\(x=5\div\dfrac{1}{2}\)
\(x=10\)
\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)
\(\dfrac{1}{4}x^2-6=10\)
\(\dfrac{1}{4}x^2=10+6\)
\(\dfrac{1}{4}x^2=16\)
\(x^2=16\div\dfrac{1}{4}\)
\(x^2=64\)
\(x^2=\left(8\right)^2\)
\(\Rightarrow x=8\)
\(=3:\left[\dfrac{4}{9}+\dfrac{1}{2}-\dfrac{4}{3}\right]-\dfrac{1}{7}\)
\(=3\cdot\dfrac{-18}{7}-\dfrac{1}{7}=\dfrac{-55}{7}\)
i giúp em vớiiiiii