Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Lời giải
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)
\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)
\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)
A = ( 1 - \(\dfrac{1}{2}\) ) + ( 1 - \(\dfrac{1}{4}\)) + ( 1 - \(\dfrac{1}{8}\)) +......+ ( 1 - \(\dfrac{1}{512}\)) + ( 1 - \(\dfrac{1}{1024}\))
A = (1 + 1 +....+ 1) - ( \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + ......+ \(\dfrac{1}{512}\) + \(\dfrac{1}{1024}\))
A = ( 1 + 1 +.....+ 1) - ( \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\)+....+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\))
Vì trong tổng A có 10 phân số nên
nhóm ( 1 + 1 +....+ 1) có 10 hạng tử là 1
Vậy A = 1 \(\times\) 10 - ( \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +..........+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\))
Đặt B = \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +......+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\)+........+ \(\dfrac{1}{2^9}\)
2B - B = 1 - \(\dfrac{1}{2^{10}}\)
B = 1 - \(\dfrac{1}{2^{10}}\)
A = 10 + 1 - \(\dfrac{1}{2^{10}}\)
A = 11 - \(\dfrac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)