Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biến đổi mẫu bằng lũy thừa của 2
sau đó nhân 2 lên vào 2 vế
cuôi cùng cộng 2B-B=B
kếu quả bạn tự làm nha
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1028}\)
\(=1-\frac{1}{1028}\)
\(=\frac{1027}{1028}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
\(A=\frac{2^{10}-1}{2^{10}}\)
Tham khảo nhé~
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
=1-1/1024
=1023/1024
\(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow2D=1+\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{256}\)
\(\Leftrightarrow2D-D=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{256}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{512}\right)\)
\(\Leftrightarrow D=1-\dfrac{1}{512}=\dfrac{511}{512}\)
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
A = ( 1 - \(\dfrac{1}{2}\) ) + ( 1 - \(\dfrac{1}{4}\)) + ( 1 - \(\dfrac{1}{8}\)) +......+ ( 1 - \(\dfrac{1}{512}\)) + ( 1 - \(\dfrac{1}{1024}\))
A = (1 + 1 +....+ 1) - ( \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + ......+ \(\dfrac{1}{512}\) + \(\dfrac{1}{1024}\))
A = ( 1 + 1 +.....+ 1) - ( \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\)+....+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\))
Vì trong tổng A có 10 phân số nên
nhóm ( 1 + 1 +....+ 1) có 10 hạng tử là 1
Vậy A = 1 \(\times\) 10 - ( \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +..........+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\))
Đặt B = \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +......+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\)+........+ \(\dfrac{1}{2^9}\)
2B - B = 1 - \(\dfrac{1}{2^{10}}\)
B = 1 - \(\dfrac{1}{2^{10}}\)
A = 10 + 1 - \(\dfrac{1}{2^{10}}\)
A = 11 - \(\dfrac{1}{2^{10}}\)