Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 2 + 4 + 6 + 8 + ... + 1000
Ta có : A = 2 + 4 + 6 + 8 + ... + 1000 ( có 500 số )
= (1000 + 2) . 500 : 2 = 250500
c) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(\Rightarrow\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+...+\dfrac{1}{11\times12}=\dfrac{21}{x}\\ \Rightarrow\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{12}=\dfrac{21}{x}\\ \Rightarrow\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{21}{x}\\ \Rightarrow\dfrac{21}{x}=\dfrac{7}{60}\Rightarrow x=\dfrac{21\cdot60}{7}=180\)
\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}=\dfrac{21}{x}\)
\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}=\dfrac{21}{x}\)
\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}=\dfrac{21}{x}\)
\(\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{21}{x}\)
Còn lại bạn tự tính
\(\dfrac{1}{20}=\dfrac{1}{4x5}=\dfrac{1}{4}-\dfrac{1}{5}\)
Tương tự các phân số khác
S= \(\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
\(\dfrac{1}{20}+\dfrac{1}{30}\)+ \(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)
= \(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\)+\(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
= \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\)-\(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{12}\)
= \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
= \(\dfrac{3}{12}\) - \(\dfrac{1}{12}\)
= \(\dfrac{2}{12}\)
=\(\dfrac{1}{6}\)
`=1/[4xx5]+1/[5xx6]+1/[6xx7]+...+1/[11xx12]`
`=1/4-1/5+1/5-1/6+1/6-1/7+...+1/11-1/12`
`=1/4-1/12=3/12-1/12=2/12=1/6`
\(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\\ =\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}+\dfrac{1}{11\times12}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\\ =\dfrac{1}{4}-\dfrac{1}{12}\\ =\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(\frac{70}{3}\left(\frac{39}{30}+\frac{39}{42}\right)-\frac{246}{7}\div\left(\frac{41}{56}+\frac{41}{72}\right)\)
\(=\frac{70}{3}\left(\frac{13}{10}+\frac{13}{14}\right)-\frac{246}{7}\div\left(\frac{41}{7\cdot8}+\frac{41}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(1+\frac{3}{10}+1-\frac{1}{14}\right)-\frac{246}{7}\div\left(\frac{40+1}{7\cdot8}+\frac{40+1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left[\left(1+1\right)+\left(\frac{3}{10}-\frac{1}{14}\right)\right]-\frac{246}{7}\div\left(\frac{5}{7}+\frac{1}{7\cdot8}+\frac{5}{9}+\frac{1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(2+\frac{8}{35}\right)-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)\right]\)
\(=\frac{70}{3}\cdot\frac{78}{35}-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\right]\)
\(=\frac{35\cdot2\cdot26\cdot3}{3\cdot35}-\frac{246}{7}\div\left(\frac{5}{7}+\frac{5}{9}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=52-\frac{246}{7}\div\left[\left(\frac{5}{7}+\frac{1}{7}\right)+\left(\frac{5}{9}-\frac{1}{9}\right)\right]\)
\(=52-\frac{246}{7}\div\left(\frac{6}{7}+\frac{4}{9}\right)\)
\(=52-\frac{246}{7}\div\frac{82}{63}\)
\(=52-\frac{82\cdot3\cdot9\cdot7}{7\cdot82}\)
\(=52-27=25\)
\(\frac{57}{20}-\frac{26}{15}+\frac{139}{20}\div3\)
\(=\frac{57}{20}-\frac{26}{15}+\frac{139}{60}\)
\(=\frac{171}{60}-\frac{104}{60}+\frac{139}{60}=\frac{103}{30}\)
\(\frac{39}{4}+\frac{2}{3}\left(11-\frac{23}{4}\right)\)
\(=\frac{39}{4}+11\cdot\frac{2}{3}-\frac{23}{4}\cdot\frac{2}{3}\)
\(=\frac{39}{4}+\frac{22}{3}-\frac{56}{12}\)
\(=\frac{119}{12}+\frac{88}{12}-\frac{56}{12}=\frac{151}{12}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2002}\right)\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2001}{2002}\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2001\cdot2002\cdot2003}{2\cdot3\cdot4\cdot...\cdot2002\cdot2003\cdot2004}=\frac{1}{2004}\)
a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)
A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+ \(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{6}\)
a)12,8 x 195 + 12,8 x 804 + 12,8
= 12,8 x (195+804+1)
=12,8 x 1000
=12800
a) = 12,8 \(\times\) ( 195 + 804 +1)
= 12,8 \(\times\) 1000
= 1280
b) = \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= 1 - \(\frac{1}{10}\)
= \(\frac{9}{10}\)
a 168 x 168 - 168 x 58/110
= 168 x (168 - 58/100)
= 168 x 8371/50
= 28126,56
b 1/20 + 1/30 + 1/42 + ... + 1/156
= 1/(4x5) + 1/(5x6) + 1/(6x7) + ... + 1/(12x13)
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52