Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{5}{1.2.3}+\frac{5}{2.3.4}+\frac{5}{3.4.5}+...+\frac{5}{10.11.12}\)
\(=\frac{5}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{10.11.12}\right)\)
\(=\frac{5}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)
\(=\frac{5}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)
\(=\frac{5}{2}.\frac{65}{132}=\frac{325}{264}\)
\(=\frac{5}{3}\left(\frac{1}{1\times2}-\frac{1}{2\times3}+...+\frac{1}{10\times11}-\frac{1}{11\times12}\right)\)
\(=\frac{5}{3}\times\left(\frac{1}{1\times2}-\frac{1}{11\times12}\right)\)
\(=\frac{5}{3}\times\left(1-\frac{1}{2}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{5}{3}\times\frac{67}{132}\)
\(=\frac{335}{396}\)
đặt S=1.2.3+2.3.4+....+47.48.49
4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)
4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49
4S=47.48.49.50-1.2.3
S=(47.48.49.50-1.2.3):4
gọi biểu thức là A
ta có :
A=3/1.2.3 + 5/2.3.4 + 7/3.4.5 +....+ 2017/1008.1009.1010
A= (1.2/1.2.3 + 2.2/2.3.4 + 3.2/3.4.5 + ... + 1008.2/1008.1009.1010) + (1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/1008.1009.1010)
A=(2/2.3 + 2/3.4 + 2/4.5 +...+ 2/1009.1010 + 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5 + ... + 1/1008.1009 - 1/1009.1010
A=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/1009-1/1010)+1/2.(1/2-1/1009.1/1010)
A<2.1/2 + 1/2.1/2 = 1+1/4 = 5/4
OK nhớ tk cho mình nhé ( dấu này / là dấu phần nhé) chúc bạn học tốt
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
\(S=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(S=\frac{5}{2}.\left(\frac{1}{2.3}-\frac{1}{100.101}\right)\)
\(S=\frac{5}{2}.\left(\frac{5047}{30300}\right)\Rightarrow S=\frac{5047}{12120}\)
Ta có :
\(M=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{10.11.12}\)
\(M=5.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\right)\)
\(M=5.\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)
\(M=\frac{5}{2}.\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)
\(M=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)
\(M=\frac{5}{2}.\left(\frac{66}{132}-\frac{1}{132}\right)\)
\(M=\frac{5}{2}.\frac{65}{132}\)
\(M=\frac{325}{264}\)
Tham khảo nha !!! Chúc học tốt !!!
Công thức :
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\frac{1}{3}=\frac{1}{1.2.3}\)